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Abstract 

Computational approaches for gene prediction have drawn a significant importance considering 

the pace at which raw sequences of biological data is getting available in past few decades 

where biological experiments for drawing the meaningful insights from these raw data have 

failed to meet this pace. This research study focuses on gene prediction towards the 

functionality of keratin digestion in scale eating.  

 

For this gene prediction, genomic data of zebrafish is used against the known keratin digestion 

data of keratin-feeding clothes moths and keratin beetles. Since fishes and insects are highly 

different organisms, it created the requirement to build a comprehensive pipeline for the gene 

prediction. Hence we first clustered the Expressed Sequence Tags (ESTs) and then they were 

passed through a motif discovery process. As the next step, those motifs were matched against 

the genome of zebrafish by performing a homology search. Exhibiting promising results, we 

could achieve a match hit with an E - value of 0.058 that starts at the location of 14411 bp in 

the genome of zebrafish.  

 

To further evaluate the obtained match, a requirement to develop a model that can claim 

whether a given sequence is a gene or not was raised. As such, in the next phase of the 

pipeline, a Markov model for CpG island prediction was designed and developed and that 

model successfully shows an accuracy of 93.5%. Finally, we passed the starting region of the 

obtained match to this model and most importantly, the model predicted it as a CpG island. 

This suggests that the obtained match exhibits the properties of a gene which can be 

considered as the ultimate highest goal that can be achieved in a computational gene 

prediction research. 

 

Keywords: Gene Prediction, Homology Discovery, Keratin, Lepidophagy, CpG Island Prediction, 

Markov Models 
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Preface 

This research builds a computational pipeline that processes from one step to another for the 

ultimate keratin digestion gene prediction. This pipeline that is proposed to acquire a homology 

match for keratin digestion is solely my design. I could not find any other computational gene 

prediction research attempts on keratin digestion or on analysing keratin digestion in scale 

eating, to best of my knowledge. Tools, algorithms and methodologies to be followed in each 

step on the pipeline were analysed and selected from a comprehensive literature survey. 

 

The machine learning approach taken for the prediction of CpG islands is mostly inspired from 

the similar researches in the domain such as the research done by M. Lan et al. [49] which was 

done for CpG Islands Identification in Human. Nevertheless, I should state that the model 

developed for the prediction of CpG island in Zebrafish is my own work. 
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Chapter 1 - Introduction 

This chapter would lay the foundations for the dissertation where it would discuss the 

background to the research and the facts that motivated the research. To get a better 

understanding, some biological concepts that are related to the research would be introduced. 

Then the research question and objectives is presented which is followed by the scope and 

limitations of the research. 

 

1.1 Background to the Research 

“Bioinformatics is what employs computational methods in order to advance the scientific understanding 

of living systems” 

 

Bioinformatics is the area which analyzes the information associated with biological data by 

building interdisciplinary links between biology, computer science, mathematics and statistics. 

Over the past few years, the availability of various biological datasets resulted from 

advancements in biotechnology have grown at a phenomenal rate. This has offered the 

opportunity to draw meaningful insights from these raw sequences of data.  Hence designing 

computational methods are becoming increasingly important in order to extract hidden 

knowledge that can have a precise impact on various different fields. One such meaningful 

insight is predicting the genes that are responsible for a particular functionality of an organism 

which is considered as a key contribution to the field of bioinformatics. 

 

An interesting functionality that can be analyzed using gene prediction methods is the 

lepidophagous behaviour. Lepidophagous behaviour is a specialized feeding behaviour of fishes 

who feed on fish scales of other fishes as a special diet. Figure 1.1 shows how a lepidophagous 

fish preys on fish scales of another fish. It is observed that this scale-eating behaviour is known 

for several unrelated fish groups [1] such as characoids fish groups, danionin fish groups and 

Catoprion mento fishes.  
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Figure 1.1: Catoprion mento feeding on fish scales [1] 

 

This research focuses on the prediction of gene towards lepidophagy behaviour and for that, it 

uses a tropical freshwater fish named as Zebrafish which is scientifically known as Danio rerio.  

 

Zebrafish is particularly selected for this research based on two reasons. Firstly that it is 

observed as a fish that belongs to a fish group that feeds on fish scales of other fishes. McClure 

et al. [2] have found out that there were fish scales in the gut content of danionin species in the 

form of prey processing as well as in the form of digestion during their study of analyzing the 

natural diet of danionin fishes including the zebrafish Danio rerio. Secondly only a few 

organisms’ complete genome is currently known such as human, chimpanzee and mouse, and 

most importantly zebrafish is among them.  

 

Surprisingly, scales are a relatively nutritious food source that have layers of keratin [3]. Keratin 

is an insoluble complex polypeptide and its complex structure has resulted in keratin being a 

component which is highly resistant to enzymatic degradation [8]. This characteristic property 

of keratin has ended up in setting up bottlenecks in the industries such as leather industry that 

inherently need the processing of keratin [8]. 
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So this research is intended on analyzing potential genes that have enabled the capability of 

keratin digestion in scale eating behaviour of zebrafish. For that, a gene prediction towards the 

function of keratin digestion is performed using known data for keratin digestion of keratin-

feeding clothes moths and keratin beetles. 

 

1.2 Motivation 

The above mentioned observations of scale eating is an interesting topic in zoology since it is 

special yet rare behaviour. Hence many biological researches have been done on the topic [1, 

3], but none of the bioinformatics research could be found that was done on primarily focusing 

the computational prediction on the potential functionality of scale digesting. 

 

Currently, experiments are going on developing different by-products on industrial aspects of 

fish scales such as pharmaceutical products [4], cosmetics and food supplements, protein rich 

organic fertilizer [7] considering the fact that fish scales are a rich host of nutrients. Despite the 

fact that there are tons of fish scales being wasted and thrown away every day, fish scale 

processing for such industries is not expanding rapidly. One of the reasons would be that 

keratin is highly resistant to enzymatic degradation [8]. 

 

That being said, there is an interesting observation from nature that there exists a few numbers 

of organisms who are with the natural capability of digesting keratin such as the above 

mentioned fishes, cloth moths, keratin beetles and Microsporum canis fungus. 

 

Discovering the potential genes behind this natural capability leads ways to the development of 

enzymes that can be used in the fish scale processing industry. Hughes et al. [8] who have 

studied deep into keratin digestion capability in insects state the importance of predicting the 

potential genes that enable this metabolism which then can be used in development of 

enzymes in laboratories to solve the real world bottlenecks encountered by the industries that 
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are associated with the processing of keratin containing components. Keratinaceous waste 

streams are gathered in unmanageable contents daily and they are with high potential to be 

converted into animal-derived biomass and development of protein rich fertilizer [16]. So the 

importance of discovering keratin digestion genes have drawn a major attention [16]. Hughes 

et al. [8] state that the catabolic pathways of keratin digestion are of great interest in the 

leather industry as well for the removal of hair. They further state that once the potential 

keratin digestion genes are identified, those proteinase inhibitors can then be used to prevent 

damage from clothes moths. 

 

Discovering the genes that perform a particular functionality can be done through biological 

experiments, but they continue to be a laborious task which requires enormous resources [23]. 

This is the reason why there is a huge gap between the number of sequence data available and 

the number of experimentally characterised genes [5, 6, 23]. Hence developing computational 

approaches have become significantly necessary. 

 

1.3 Explanation of some biological concepts 

1.3.1 Gene prediction and Homology search 

Gene prediction methods in bioinformatics are used to predict the genes that are responsible 

for a particular functionality of an organism. In the context of this research, this particular 

functionality would be keratin digestion. For gene prediction in bioinformatics, a dataset of 

genes of an organism that is known to carry out a particular functionality is used [10]. Then that 

dataset is matched against another organism who is known to have the capability of doing that 

same functionality. This is called a homology search [10, 14]. If a homology (similarity) match is 

found in that organism, that matching genes are said to be with the capability of performing 

that same functionality.  
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1.3.2 Expressed Sequence Tags (ESTs) 

Expressed Sequence Tag is a short sub-sequence of a cDNA sequence which represents portions 

of expressed genes. In this research, as the known dataset, we use Expressed Sequence Tags of 

clothes moths and keratin beetles that got expressed during digestion of keratin in their guts. 

 

1.3.3 Motifs 

Motifs are short, recurring patterns in proteins that are presumed to have a biological function.  

A homology search becomes more accurate when motifs are used [9]. Hence, we use motifs of 

Expressed Sequence tags for biological function of keratin digestion in the context of this 

research. 

 

1.3.4 CpG islands to identify genes 

CpG islands are ‘start region’ of genes. CpG islands in the promoter region express a gene and a 

CpG island in the promoter region of a gene is methylated, expression of the gene is repressed 

(it is turned off) [37]. Therefore, CpG islands play a major role in identifying a gene as if it is a 

gene then CpG island can be found in the starting region as shown in Figure 1.2  

 

 

Figure 1.2: Starting region of a gene [38] 
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1.4 Research question and Objectives 

1.4.1 Research question 

The main research question that we address in this study is as follows, 

Are there any potential undiscovered genes that are responsible for the ability of keratin 

digestion on scale eating in zebrafish? 

 

1.4.2 Project aims and objectives 

The main aim of this research is to explore whether there exist any potential undiscovered 

genes that have the capability of keratin digestion on scale eating in zebrafish. 

 

Therefore the objectives of this study can be defined as follows which would build a 

computational pipeline to achieve the ultimate aim, 

 

* Obtain motifs in the clusters of expressed sequence tags of clothes moths and keratin beetles 

that perform the function of keratin digestion 

 

* Obtain homology match between above identified motifs and the genome of zebrafish for the 

function of keratin digestion 

 

* Design and develop a model to analyze a homology match in order to claim it as a potential 

gene 
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1.5 Scope and limitations 

* Data available for this research are the complete genomes of zebrafish and Expressed 

Sequence Tags of keratin-feeding clothes moths (920 ESTs) and keratin beetles (883 ESTs) 

which are taken from publicly available datasets 

* Lepidophagous behaviour of zebrafish is analyzed through only the functionality of keratin 

digestion 

* Gene prediction for keratin digestion is derived considering only the organism level of insects 

with zebrafish 

1.6 Outline of the Dissertation 

This dissertation is organized in six main chapters including the Introduction chapter. So the 

remainder of this dissertation is organized as follows. 

With the precise introduction given in Chapter 1, this dissertation would then describe, 

Chapter 2: Provides the relevant Literature Review 

Chapter 3: Describes proposed research design including key concerns and architectural 

aspects.  

Chapter 4: Is dedicated for the implementation details of the research 

Chapter 5: Presents the results of the research with relevant discussions 

Chapter 6: Concludes the study highlighting major contributions, limitations and future work 
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1.7 Summary 

This chapter provides a precise introduction to the research. The motivation behind the 

research was justified, and then it introduced the research problem and research questions and 

hypotheses. The dissertation was outlined, and the limitations were given. On these 

foundations, the dissertation can proceed with a detailed description of the research. 
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Chapter 2 - Literature Review 

This Chapter provides the literature review with regard to the concepts and methodologies 

related to the research. It would first analyzed the other sequence similarity based researches, 

researches that involved keratin digestion functionality and then would provide a 

comprehensive comparison of available EST clustering algorithms. Finally two different methods 

used for the prediction of CpG island are deeply analyzed. 

 

2.1 Sequence Similarity (Homology) Search 

With the advancement of the biological researches, many raw genome related sequences are 

extracted, yet only a few of those sequences have been experimentally characterised, meaning 

the functionality of the most of  those sequences performed in an organism has not yet been 

discovered with biological experiments due to their requirement of enormous resources. Hence 

computational biology comes into the picture to bridge this gap between the raw sequences 

and prediction of their functionalities [9-11]. Out of thousands of examples of such function 

predictions, one example is that, almost all the functions of the genome of Methanococcus 

jannaschii have been obtained from function predictions using similarity searches and not from 

biological experiments [12]. 

 

Pearson [10] states that sequence similarity search is one of the first and most informative way 

of conducting an analysis of newly determined sequences. The functionality of such sequences 

can be inferred from similarity search. In this study, we are trying to predict the function of 

keratin digestion in scale digesting. Pearson [9] further claims that homologous search is an 

“effective and accurate” way and it is the most popular mechanism on inferring sequences that 

behave functionally same. 
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In researches when evaluating a homology match, generally an E-value is used. But the value 

for taken as the E value is context sensitive and as such, it vastly varies from one research to 

another [45]. C. A. Kerfeld et al. [45] who have studied on the E-value suggest that selecting the 

E-value for a significant homology match would depend on the sequences on which one tries to 

obtain a homology.  

  

2.2 Identification of keratin digestion functionality 

Identifying potential genes for keratin digestion is of greater interest and due to its high 

demand in keratin processing industries, the commercial value of such discoveries are also 

higher. Industries that develop leather products, animal-derived biomass and protein rich 

fertilizer etc. have high requirement of enzymes for keratin degradation from such potential 

genes [16].  

 

Only in very recent past, computational biology came into the picture for identifying potential 

keratin digestion genes and until then biological experiments have achieved so little in isolating 

keratin digestion enzymes [16]. It is expected to identify potential keratin digestion genes using 

novel computation biological methodologies and then using that knowledge to develop 

enzymes inside biotechnical laboratories can pass the barriers that currently exist. 

 

Until 2006, identifying potential genes for keratin digestion is done only on microorganism level 

which does not give satisfactory results in industrial aspects [8]. 
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2.2.1 Gene prediction for keratin digestion in insects 

J. Hughes et al. [8] have first tried on the identification of potential keratin genes in insects, 

specifically keratin-feeding clothes moths (Tineola) and keratin beetles (Trox) which had 

previously tried only at microorganism level. This study is primarily based on this research and 

we are trying to bring it to the level of fish from insects. In the study done by J. Hughes et al. 

[8], they have fed clothes moths and keratin beetles on a meal of keratin that contains a 

mixture of human hair, feathers and wool. Then after letting them to digest keratin they have 

extracted the expressed sequences in the gut and thorax muscle of these two insects that got 

expressed during the keratin digestion process. 

 

Then J. Hughes et al. [8] have conducted a gene prediction from homology search for keratin 

digestion with comparisons to known protein sequences which are serine proteases. They also 

have claimed that Tineola and Trox are two species that substantially differ in morphology. And 

for homology alignment matching they have used Blastx tool. Finally for the results from 

sequence similarity predictions for keratin digestion they have obtained percent identical 

residues of 22.4% for Tineola and 6.8% for Trox.    

 

2.3 Expressed sequence tags clustering 

Expressed Sequence Tags (ESTs) are sequences that are used to explore the transcriptome 

which means a record of gene activity. ESTs are short fragments of DNA created in the 

laboratory [17]. They are widely used for gene discovery and expression analysis [18]. Below 

sections would provide a comprehensive literature study on main clustering algorithms 

comparing inherent strengths and weaknesses of each in order to identify the best suiting 

algorithm to be used in this research. 
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2.3.1 d2_cluster algorithm 

d2_cluster, is an agglomerative algorithm for rapidly and accurately partitioning transcript 

databases discovered by J. Burk et al. [19]. In d2_cluster every sequence begins in its own 

cluster, and the final clustering is achieved using mergings. The criterion for merging clusters is 

the detection of two sequences that share a window of bases that is a threshold percent or 

more identical. 

 

As it can be seen in above described steps of d2_cluster, the algorithm is designed in such a 

way that it can be get easily familiarized to statisticians, computer scientists, and biologists alike 

[19]. Hence d2_cluster, is widely used and has been established as producing valid and useful 

results from the scientific point of view [20]. But this algorithm fails in situations where it 

requires to join a valid cluster that was generated with another method or if that method 

introduces a false join or if requires different clustering criterion methods [19].  

 

2.3.2 TIGR Gene Indices clustering (TGICL) 

In TGICL is a pipeline for EST clustering where the sequences are first clustered based on 

pairwise sequence similarity, and then assembled by individual clusters to produce longer, 

more complete consensus sequences. It uses internal graph representations where sequences 

represent nodes and filtered alignments represent edges [18]. One of the fundamental 

advantages of this is that it performs a fast clustering of large EST datasets, where its 

researchers claim that sets of 150 000 ESTs can be fully clustered and assembled overnight on a 

single CPU [18]. 

 

However S. Hazelhurst et al. [17] state that the primary aim of programs like TGICL that 

perform EST clustering is on supervised or seeded clustering. Hence it can then perform 

clustering with an approximate matching of ESTs against a known genome [17]. Further, they 

state that TGICL like programs have significant computational cost overhead in its sequence 

assembly phase.  
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2.3.3 CLU: A new algorithm for EST clustering 

This is based on CLU match detection algorithm, which has improved performance over the 

widely used d2_cluster clustering algorithm. After using match detection algorithm, it performs 

clustering based on inter-cluster distance which is taken from the nearest neighbor distance 

[20]. 

 

The set of the algorithms that used in previous generation of EST clustering such as d2_cluster, 

CAP3, TGICL are not primarily based on techniques that analyze properties of EST data but 

instead shotgun sequences [21]. S. H. Nagara et al. [21] state that new generation algorithms 

such as CLU have been developed specifically for EST clustering and assembly and will continue 

to play a central role in the analysis ESTs.  

 

2.3.4 wcd EST clustering 

wcd (name given to the algorithm which is pronounced as wicked) is the algorithm selected to 

perform EST clustering in this research. 

wcd performs an efficient all-versus-all comparison of ESTs. For the clustering purposes, it uses 

both d2 distance function and edit distance [22]. Researchers have improved existing 

implementations of d2 [19] when it is used in wcd. It takes heuristics parameters for speedup 

but they do not affect the quality of results but increase the clustering speed and window size 

parameter to determine how long the overlap should be during alignment. In an overview done 

to wcd by S. Hazelhurst et al. [22], compared to other clustering tools it has achieved a better 

clustering when all of them were used in default parameters. Table 2.1 provides a summary 

about all the clustering algorithm that were analyzed so far. 
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Table 2.1: Summary of the Clustering Algorithms 

Summary  d2_cluster 
algorithm 

TGICL CLU algorithm wcd algorithm 

General Analysis  * Discovered by 
J. Burk et al. 
(1999) 
 
* Is an 
agglomerative 
algorithm for 
rapidly and 
accurately 
partitioning 
transcript 
databases  
 
* Every sequence 
begins in its own 
cluster 
 
* Criterion for 
merging clusters 
is  two sequences 
that share a 
window of bases 
more than a 
threshold 
percentage 
identical 

* First clustering 
based on 
pairwise 
sequence 
similarity 
 
* Then 
assembled by 
individual 
clusters to 
produce longer, 
more complete 
sequences 
 

* CLU match 
detection 
algorithm 
 
* First uses a 
match 
detection 
algorithm 
 
* Then 
performs 
clustering 
based on inter-
cluster distance 
which is taken 
from the 
nearest 
neighbour 
distance 
 

* In clustering, for 
distance purposes, it 
uses both d2 
distance function or 
edit distance 
 
 
* ASn efficient all-
versus-all 
comparison of ESTs 

 

Importance and 
advantages 

* Easily 
familiarized to 
statisticians, 
computer 
scientists, and 
biologists alike 
 
* Hence widely 
used 
 

* Builds a 
pipeline for EST 
clustering 
 
* Performs a fast 
clustering of 
large EST 
datasets 
 

* An improved 
performance 
over the widely 
used d2_cluster 
clustering 
algorithm.  
 
* A new 
generation 
algorithms 
meaning not 
like previous 
generation, this 
algorithm is 

* Researchers have 
improved existing 
implementations 
of d2 when used in 
wcd 
 
* A new generation 
algorithms 
 
* Wcd remains 
significantly more 
sensitive than the 
others EST 
clustering 
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primarily 
concerned on 
ESTS 
 
 

algorithms 
 
* Speed up 
heuristics and 
window size is user 
input parameters, 
so user can 
determine the 
clusters he wants 
 
* more robust to 
errors 

Limitations  * Would not 
work if it requires 
to join a valid 
cluster that was 
generated with 
another method 
 
*  Or if method 
introduces a 
false join 
 
* Or if requires 
different 
clustering 
criterion 
methods 

* Primarily 
designed to 
perform EST 
clustering is on 
supervised or 
seeded 
clustering 
 
*  To work 
against a known 
genome with an 
approximate 
matching of ESTs 
 
* Significant 
computational 
cost overhead in 
its sequence 
assembly 
(second) phase 

* Generates a 
cluster 
consensus 
based on 
unsorted pair-
wise alignments 
only 
 
* The quality of 
results is curbed 
by the 
performance 
limitation of a 
desktop PC 

*  Parallelizing 
algorithm is yet to 
be looked   
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2.4 CpG islands prediction 

CpG islands are the ‘start region’ of genes in a genome which is rich of a C followed by a G in 

the 5’ to 3’ direction where p in CpG implies the 5’ to 3’ direction. As it marks start region of 

genes, in the process of identifying the gene mutation and gene regulation, CPG islands play an 

important role [24-25].  

 

H. Shu et al. [26] discuss about the importance of keeping the focus on CpG proteins for when 

analysing genes. The reason that CpG islands prediction is important for this research is that 

using a CpG islands prediction model, a homology match in the genome of zebrafish can 

analyzed to see whether it is a gene or not.  

 

2.4.1 Cutoff based algorithms to predict CpG islands 

The traditional methods that were used to predict CpG islands are based on the cutoffs that 

were generated from the definitions created for CpG islands that involves their “GC content” 

and observed to expected CpG ratio (O/E). Hence the algorithms that were used to predict CpG 

islands are based on GC content and observed to expected CpG ratio (O/E) [27].  

 

Those traditional algorithms used the cutoffs of GC content > 50% and O/E > 0.6 which was first 

defined by M. Gardiner-Garden et al. [28]. Since then, different approaches have been tried 

such as using different cutoff values [29] instead of the above values of the definition. J. L. Glass 

et al. [30] have used an approach of selecting these cutoff values from a drawn histogram of 

the CpG island distribution and based on the length of a segment needed to cover the nearest 

27 CpGs. However, this 27-CpG requirement results in leaving out many shorter CpG islands 

[31]. 

 

But the problem of using cutoff values for the prediction of CpG islands is that neither a 

biological argument nor a formal statistical motivation was used in picking up these cutoff 
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values which were based on a difficult to interpret scale [27]. In fact, the results of prediction of 

CpG islands vastly varied from the CpG islands that were identified later through biological 

experiments [25, 27]. 

 

2.4.2 Markov models to predict CpG islands  

Markov model based approaches have been used for sequence analysis more recently such as 

partition genomes into segments. In general, Markov models have been extensively used in 

different sequence analysis to discover functional elements in various genomes [27].  

 

N. Dasgupta et al. [25] have first tried applying Markov models for the prediction of CpG 

islands. They have tried a Markov Model (MM), Hidden Markov Model (HMM), and a wavelet-

based Hidden Markov Tree (HMT) to prediction positions of CpG islands in the human genome. 

HMT model has yielded a larger set of declared CpG islands compared to the MM and HMM. 

The HMM employs two hidden states: one characteristic of an underlying CpG region, the other 

characteristic of non-CpG data. However all those three algorithms have predicted the position 

of CpG islands beyond the length of the actual CpG islands [25]. 

 

H. Wu et al. [27] have also tried an approach of using Hidden Markov Model for prediction of 

CpG islands. They claim that since the underlying structure of the genome with base and CpG 

includes unobserved states which are presumed to be locally correlated along the genome, 

HMMs are a natural method to be considered for the prediction of CpG islands. They have 

designed the HMM using three states namely Alu repetitive elements, baseline, and CpG. Then 

to obtain transition probabilities they considered that CpG implies the probability of a C at 

location t followed by a G is less likely than would be predicted by chance under independence: 

pCG(t) < pC(t) × pG(t + 1). . For the results they could increase number of CpG islands predicted 

by 81% than the Genome Browser CpGs and 86% than the research done by L. Glass et al. [30]. 
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M. Lan et al. [49] have also taken a machine learning approach to predict CpG islands of human 

genome. They have used an HMM of eight states which are A+, C+, G+, T+, A-, C-, G-,T-, where 

plus and minus indicates the transitions inside and outside the cpg islands. They have used a 

200bp length definition for CpG islands which is important for our research when deciding the 

starting region of an obtained homology match. Furthermore, this research clearly presents 

evaluation metric results so that it can be easily compared against another newly introduced 

model can be compared against it. Figure 2.1 shows their performance measures.  

 

Figure 2.1 performance measures on subsets of training data set from research [49] 

 

They have claimed that the accuracy of their system is very encouraging and it can be above 

80%. However, the best accuracy they have achieved has come at the 20% of the full dataset 

which counts to 200 sequences. 
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2.5 Summary 

In this chapter, a comprehensive literature review was provided that covered each component 

in the proposed computational pipeline.  Initially, literature review was focused on the 

researches on homology search and identifying potential genes for keratin digestion. However, 

none of the bioinformatics research could be found that this research can directly be compared 

with. Then a review and a comparison were provided on four main EST clustering algorithms 

that belongs to two generations. Then for the last part of the computation pipeline, a literature 

review was conducted on CpG islands prediction which was helpful to gain a better 

understanding of the different approaches available for CpG islands prediction and to identify 

the best suiting approach for this research’s context. 
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Chapter 3 - Design 

The intention of this chapter is to present the research design. It would describe the 

fundamental approach, components of the research diagram and then at the end, different 

evaluation methods that are expected to be used would be discussed. 

 

3.1 Fundamental Approach 

The main goal of this research is to find out whether there exist any potential undiscovered 

genes in zebrafish that have given it the capability to digest keratin for its scale eating 

behaviour.  

 

For that, we use Expressed Sequence Tags (ESTs) of keratin-feeding clothes moths (Tineola) and 

keratin beetles (Trox) that were extracted during the digestion of keratin. Then we look for 

homology (similarity) search of them with the genome of zebrafish for the functionality of 

keratin digestion. The reason that such homology match obtained is claimed to be performing 

keratin digestion functionality, is that the known data that is matched against the genome are 

extracted when they were specially expressed to perform keratin digestion. 

 

Zebrafish and keratin-feeding clothes moths (Tineola) and keratin beetles (Trox) are highly 

different organisms (fish and insects) which make gene prediction using a homology search a 

complex task. Hence our methodology builds a comprehensive pipeline for performing a 

homology search.  
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Motif discovery of expressed sequence tags is a significant component in this pipeline. Motifs 

are the recurring patterns that exist between ESTs. Thus, a single motif can represent a more 

generalized pattern that reflects a set of ESTs. Therefore using motifs instead of ESTs itself, 

enhances the accuracy of homology search [35].  

 

Since motifs reflect a set of ESTs, the better approach is to perform a clustering of ESTs prior to 

obtaining motifs. Then the motif discovery process is conducted in each cluster of ESTs. 

 

Then a homology search is conducted between these motifs and the genome of the zebrafish 

by aligning them together. Once homology matches are found, it should be further analyzed to 

see whether it is satisfying the properties of a gene in order to claim the match as a potential 

gene for keratin digestion.  
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3.2 Research Design Diagram 

Above described approach pipeline is shown visually in the below design diagram shown in the 

Figure 3.1. 

 

Figure 3.1:  Overview of the research design 

The design of the Match analyzer is described in section 3.3 and illustrated in Figure 3.2. 
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3.3 Homology Match Analyzer Design 

Once a homology match is found, it brings the necessity to design an analyzer in order to 

analyze the match further and claim whether the found match is a potential gene or not. Design 

in Figure 3.2 explains the procedure how a homology match is claimed a potential keratin 

digestion gene or would simply have to discard the match as not a gene. As shown in the 

diagram the match is passed through a CpG-island predictor. The design of the CpG-island 

predictor would be described in the next section. As discussed in section 1.3.5 – ‘CpG islands to 

identify genes’, the importance of CpG islands is that they mark the starting region of a gene. 

CpG-island predictor would output whether the starting region of the match has properties of a 

gene, and if so the match is claimed as a gene and if not, the match is not a gene. 

 

 

Figure 3.2: The design of Homology Match Analyzer. 
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3.4 Markov model for prediction of CpG islands 

As described in the Homology Match Analyzer, it is very important to design a mechanism to 

further analyze a homology match before claiming it as a gene. For this, the concept of CpG 

islands is used. CpG islands mark the starting region of a gene. Therefore a CpG island predictor 

is designed in such a way that the starting region of the homology match can be passed through 

it in order to see whether the starting region satisfies the genomic properties of CpG islands. 

 

As discussed in literature, in cutoff based method for CpG island has its inherent issue which is 

that neither a biological argument nor a formal statistical motivation was used in picking up 

these cutoff values which were based on a difficult to interpret scale the In the design of CpG 

island predictor, the natural properties of CpG islands were mapped to a computational model. 

Hence it is decided to use a Markov model for the prediction of CpG islands. The reason why a 

Hidden Markov model is not preferred, is that the nature of the available dataset does not 

support it. Dataset has two separate sets of CpG islands and non CpG islands and not a whole 

sequence annotated with the CpG island and non CpG islands. 

 

CpG islands are consist of letters {A, T, C, G} but their transition probability are different from 

the normal other sequences of the genome that involves having higher C to G is higher than the 

non CpG islands. 

 

A Markov model is a finite state machine that changes from state to state at every time 

instance depending on a transition probability [41]. It was introduced by after the Russian 

mathematician Andrey Markov and named after him [42]. In CpG islands, a letter that occurs at 

a particular location of the sequence does not convey any information with regard to next 

location of the sequence that gives the ability to predict the coming letter of the following 

location [27]. Hence, CpG islands satisfy the conditional independence property of Markov 

models.  
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As such, Markov model for the prediction of CpG islands to identify genes is a natural approach 

to be tried out. In this research, CpG island prediction is seen as a Markov model problem.  The 

advantage using Markov model instead of traditional algorithms to predict CpG islands is that, it 

outputs a probability score which then can be used to match against the statistical properties of 

a homology match in order to be claimed as a potential gene for keratin digestion. 

Generally a Markov model is defined as a triplet (Q, p, A), 

 where, 

Q is a finite set of states 

p is the initial state probabilities 

A is the state transition probabilities. Each state transition 𝑎𝑠𝑡 for each s, t in Q is defined as in 

Equation 3.1, 

𝑎𝑠𝑡 ≡ 𝑃(𝑥𝑖 = 𝑡 | 𝑥𝑖−1 = 𝑠)                                                                                                  (3.1) 

                                              

A Markov model should satisfy the property that conditional probability distribution of future 

states of the process depends only upon the present state, not on the sequence of states that 

preceded the present state [42].  

 

In this study, prediction of CpG islands is considered as first order Markov chain problem. In a 

first order Markov chain, its current state 𝑥𝑖should only depend on its previous state 𝑥𝑖−1. 

That is, 𝑃(𝑥𝑖| 𝑥𝑖−1, 𝑥𝑖−2, . . . , 𝑥3, 𝑥2, 𝑥1)  =  𝑃(𝑥𝑖| 𝑥𝑖−1)                                                        (3.2)

   

Hence, probability of a sequence  𝑋 is defined as in Equations 3.3 and 3.4 

𝑃(𝑋)  =  𝑃(𝑥𝐿 , 𝑥𝐿−1, . . . , 𝑥3, 𝑥2, 𝑥1)                                                                                                      (3.3) 

        = 𝑃( 𝑥𝐿| 𝑥𝐿−1) ∗ 𝑃(𝑥𝐿−1| 𝑥𝐿−2) . . . .∗ 𝑃( 𝑥2| 𝑥1) ∗ 𝑃(𝑥1)                                                        (3.4) 

where 𝐿 is the total length of the sequence 𝑋 
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The proposed Markov model for the CpG islands prediction of zebrafish uses sequence DNA 

letters { A, T, C, G} as the states. Figure 3.3 shows the state transition diagram of the proposed 

Markov model. Whenever one letter is followed by another letter, the proposed Markov model 

sees it as a state transition from the first letter state to the next letter state. For an example, let 

the sequence be “ATT”, when it is fed to the Markov model, it would see it as a state transition 

from state A to state T and then a state transition from state T to itself. 

 

 

Figure 3.3 State transition diagram of the proposed model 
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3.4.1 Sub Models 

The CpG island predictor employs two sub models: cpg model and non-cpg model 

cpg model would be used for the transitions that happen inside the CpG islands and hence it 

would be trained with the CpG islands of zebrafish and 

non-cpg model would be used for the transitions that happen outside the CpG islands and 

hence it would be trained with the non CpG islands of zebrafish. 

 

State transition probabilities would be statistically defined as below for two sub models. 

 

Let state transition probability from state 𝑠1to 𝑠2 within cpg model be 𝑎𝑠1𝑠2

+ . 

Then 𝑎𝑠1𝑠2

+ would be as in Equation 3.5. 

𝑎𝑠1𝑠2

+ =
𝑁+

𝑠1𝑠2

∑ 𝑁𝑡1𝑡2
+                                                                               (3.5)

      

𝑁+
𝑠1𝑠2

 is the Number of times 𝑠1𝑠2 transitions happened inside the cpg islands 

∑ 𝑁𝑡1𝑡2

+ is the total Number of all transitions happened inside the cpg islands 

 

Let state transition probability from state 𝑠1to 𝑠2 within non-cpg model be 𝑎𝑠1𝑠2

− . 

Then 𝑎𝑠1𝑠2

− would be as in Equation 3.6. 

𝑎𝑠1𝑠2

− =
𝑁−

𝑠1𝑠2

∑ 𝑁𝑡1𝑡2
−

                                                                                   (3.6) 

𝑁−
𝑠1𝑠2

 is the Number of times 𝑠1𝑠2 transitions happened outside the cpg islands 

∑ 𝑁𝑡1𝑡2

− is the total Number of all transitions happened outside the cpg islands 
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3.4.2 Decode a sequence 

Once these two models are trained, then it is ready to decode a given sequence to see whether 

the given sequence has the properties of cpg islands or not. The given sequence should be 

passed through two models and the probability that it belong to either cpg model or non-cpg 

model is analyzed.  

𝑆𝑐𝑜𝑟𝑒 𝑉𝑎𝑙𝑢𝑒 (𝑥)  =
𝑃(𝑥 | 𝑐𝑝𝑔 𝑚𝑜𝑑𝑒𝑙 )

𝑃(𝑥 | 𝑛𝑜𝑛 −𝑐𝑝𝑔 𝑚𝑜𝑑𝑒𝑙 )
                                                               (3.7) 

 As in Equation 3.7, if the higher probability comes when the sequence 𝑥 is in the cpg model, 

then that sequence is decoded as a cpg island and otherwise it is decoded as a non cpg island. 

Then log value of above 𝑆𝑐𝑜𝑟𝑒 𝑉𝑎𝑙𝑢𝑒 (𝑥) is taken as in Equation 3.8 so that the score value 

would be converted to a log scale and hence whenever a given sequence is a CpG island, model 

would output a positive value and if otherwise, it would give a negative value.  

𝐿𝑜𝑔 𝑂𝑑𝑑 𝑆𝑐𝑜𝑟𝑒 (𝑥)

=  𝑙𝑜𝑔 
𝑃(𝑥 | 𝑐𝑝𝑔 𝑚𝑜𝑑𝑒𝑙 )

𝑃(𝑥 | 𝑛𝑜𝑛 − 𝑐𝑝𝑔 𝑚𝑜𝑑𝑒𝑙 )
                                                                                                         (3.8) 

 

=  ∑

𝐿−1

𝑙=0

𝑙𝑜𝑔 
𝑎𝑙,𝑙+1

+

𝑎𝑙,𝑙+1
−                                                                                                                                    (3.9) 

 

𝐿 in Equation 3.9, is the total length of sequence 𝑥that is passed through the Markov model to 

decode. As in Equation 3.9, accumulated log ratio should be calculated for all the possible 

transitions in the sequence and if 𝐿𝑜𝑔 𝑂𝑑𝑑 𝑆𝑐𝑜𝑟𝑒 (𝑥)  > 0, 𝑥 is classified as CpG island and if 

otherwise, 𝑥 would be a non CpG island. 
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3.5 Evaluation 

For the evaluation of gene prediction researches in bioinformatics, different statistical 

measurements are used. The statistical measurements that we would be using are discussed in 

next sections. 

 

3.5.1 Similarity Matrix Score 

Similarity matrix score is obtained from the alignment matrix where two sequences are aligned 

based on the matching of one character to the other. The scoring mechanism uses gap 

penalties for mismatching gaps. So this numerical value represents the how strong two 

sequences are aligned together hence higher the score is, higher homology is claimed [14-15].  

 

3.5.2 P-value 

P-value is defined as the probability that a random sequence (with the same length and 

conforming to the background) would have position p-values such that the product is smaller or 

equal to the value calculated for the sequence under test. 

The position p-value is defined as the probability that a random sequence (with the same 

length and conforming to the background) would have a match under test with a score greater 

or equal to the largest found in the sequence under test [43]. 

 

3.5.3 E-value 

E-value that is associated to a score S is the number of distinct alignments, with a score 

equivalent to or better than S, that is expected to occur in a dataset search by chance. The 

lower the E value, the more significant the score is, 

𝐸 = (𝑛 × 𝑚) / ( 2𝑆 ′
)                                                                                                                        (3.10)                                           

Equation 3.10 shows the equation for the E-value calculation where n is the total number of 

residues the database and m is the length of the query sequence where 𝑆′ is the Score [45]. 
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3.5.3 Percent identical residues  

The basic and most frequently used method to measure similarity is percent identical residues 

[13]. In simple terms, percent identical residues are taken as R on R -> 1, R on K -> 0 and then 

the identity is indicated as a percentage of total alignment [9]. 

 

3.5.4 Evaluation of prediction model for CpG islands 

For the evaluation purpose of the model to predict CpG islands would be measured in terms of 

accuracy, sensitivity, specificity and precision.  Possible outcomes of the model can be depicted 

in a confusion matrix as shown in Figure 3.4 

True positive (TP) would be CpG island being predicted as a CpG island  

True negative (TN) would be non CpG island being predicted as a non CpG island 

False positive (FP) would be non CpG island being predicted as a CpG island 

False negative (FN) would be CpG island being predicted as a non CpG island 

 

Figure 3.4: Confusion Matrix 
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Accuracy = (TP + TN)/ (P + N) 

Sensitivity = (TP)/ (TP + FN) 

Specificity = (TN)/ (FP + TN) 

Precision = (TP)/ (TP + FP) 

 

3.6 Summary 

This chapter presented the research design with design diagrams for the computational 

pipeline, for the design of homology match analyzer and for state transition diagram of the 

proposed model. After describing the fundamental approach of the design, a detailed 

description of each component of the computational pipeline was provided by further breaking 

down the internal components as well. Further, the mathematical derivations that were 

needed for the development of CpG island predictor that uses Markov model were also 

presented. The chapter is concluded by stating the evaluation methods that were used to 

evaluate the final research outcomes. 
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Chapter 4 - Implementation 

Through this chapter, the implementation details of the research is discussed at a finer level of 

detail, down to the code level. Each step in the proposed pipeline is selected and how they are 

actually implemented in order to obtain the expected results are presented in this chapter. 

 

4.1 Data Collection 

As stated in Chapter 1, this research is based on publicly available data. For this research three 

types of datasets were required which are, 

(i)  EST dataset of keratin-feeding clothes moths (Tineola) and keratin beetles (Trox)  

(ii) Complete Genome of zebrafish 

(iii) CpG islands dataset of zebrafish 

 

Expressed sequence tags (ESTs) of keratin-feeding clothes moths (Tineola) and keratin beetles 

(Trox) are taken from the research done by J. Hughes et al. [8] and those ESTs have been 

submitted to GenBank [36]. GenBank is an online database that contains publicly available 

nucleotide sequences that are submitted from individual research laboratory experiments to 

large-scale sequencing projects [39]. 

 

The complete genome of zebrafish is needed in this research and would also be taken from 

GenBank [36]. 

 

CpG island dataset is taken from haowu lab [40]. Haowu lab has collections of different 

biological sequences and it has CpG island datasets of different organisms including zebrafish as 

well. Since any sequence in the genome of zebrafish other than the CpG islands are non CpG 
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islands, no specific separately created dataset can be found for non CpG island of Zebrafish. 

Hence a code is implemented which randomly gets the sequences from the genome of 

zebrafish. (This code is made available in Appendix A.3). One can argue that taking random 

sequences can include CpG islands as well. Since all the CpG islands of zebrafish is not identified 

yet, such attempt on excluding CpG islands from randomly generated sequences would anyway 

fail. Further compared to the size of the genome of zebrafish (Genome of zebrafish is 

1,464,443,456 characters long), it can be safely stated that getting a random number out of 

1,464,443,456  and becoming it a CpG island is unlikely and as such, the effect is highly 

negligible.  

 

4.1.1 Sizes of the datasets 

● EST dataset carries 920 ESTs of keratin-feeding clothes moths and 883 ESTs of keratin 

beetles. 

● Zebrafish genome is 1,464,443,456 Base Pairs long  

● CpG island dataset of zebrafish contains 326 sequences where 116 are CpG islands and 

210 are non CpG islands.  

 

Out of CpG island dataset, 77 sequences are kept for the training dataset 39 sequences are kept 

as the testing dataset. 

 Out of non CpG island dataset, 140 sequences are kept for the training dataset 70 sequences 

are kept as the testing dataset.  
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4.2 Preprocessing of Expressed sequence tags 

Expressed sequence tags (ESTs) are extracted from laboratory experiments after undergoing 

through a huge chemical procedure [8]. Hence there can be ESTs with low quality. The quality 

of ESTs affect the final results in a great deal [21] it is essential to filter out the low quality ESTs. 

For the prepossessing of ESTs, SeqTrim tool [32] is used which would trim the low quality ESTs 

and the ESTs that are repeated using repeat masking. 

 

4.3 Clustering of Expressed sequence tags  

Expressed sequence tags are sequences of letters {A, T, C, G}. They do not carry a numerical 

value or other attribute values as such. Therefore clustering of ESTs is not a straightforward 

operation. But for the next step of discovering motifs in building the path for homology search, 

clustering of ESTs are essential as it results in obtaining stronger motifs [21].  

 

It has been provided an extensive literature survey on EST clustering algorithms in this 

dissertation under section 5.3 - Expressed sequence tags clustering. From that, the following 

factors were able to be identified that led to choose wcd (wcd is the name given to the 

algorithm which is pronounced as wicked) EST clustering [22] in this research for the clustering 

ESTs. 

● wcd algorithm provides an all-versus-all comparison which is required in the context of 

this research as all the ESTs are equally important with regard to the biological 

experiment that was conducted to extract them  

● d2_cluster [19], as discussed in literature  is a widely used algorithm but wcd is an 

improved version of d2_cluster 

● Only wcd provides the ability for user to try out different  user inputs in order to 

determine the better clusters out of different clusters provided 

●  The disadvantage of the algorithm which is the inability for parallelism does not stand 

against this research’s context, 
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Hence wcd algorithm is decided to be used in this research. 

 

4.4 Motif Discovery and obtaining homology matches 

Since we have performed a clustering of ESTs in the previous stage, discovering motifs in each 

cluster results in stronger motifs. This is due to the reason that a cluster contains ESTs of similar 

origin and hence when motif discovery operation is performed, that does not try to generalize a 

recurrence pattern by force to an EST that is totally different to this similar set of ESTs which 

otherwise would result in low quality motifs. For the purpose of motif discovery, we would be 

using MEME [34, 44] algorithm. 

 

Once the motifs are obtained for clusters of ESTs, then homology matches should be looked 

for. For that, the genome of zebrafish and motifs would be aligned using pairwise local 

alignment. In this study, BLAST - Basic Local Alignment Search Tool [48] is used, which is the 

most popular and most widely used local alignment tool in bioinformatics [46, 47].  Then the 

resultant homology matches should be through the match analyzer to analyze it further before 

claiming it as a potential gene for keratin digestion in scale eating.  

 

4.5 Homology match analyzer design 

Once a homology match is found, it is passed through the match analyzer to further analyze it 

further. It would follow match analyzer procedure explained in section 3.3 – ‘Homology Match 

Analyzer Design’ and a homology match is claimed as a potential keratin digestion gene or 

would not be classified as a gene based on the output given by the CpG island predictor. 

 



 

 

36 

 

4.6 CpG island predictor  

The design of CpG island predictor which is used to predict the CpG islands in zebrafish is 

extensively described in “Section 3.4 Markov model for prediction of CpG islands”. This 

research has used python 3.5 to implement the design of the CpG island predictor. 

Below code segment implements the Markov model according to the design that was described 

earlier. transCountMatrix carries the full transitions count for each possible transition where 

transMatrix has the state transition probabilities for all states. (Note: Full code implementation 

is available in Appendix A) 

def calcMarkov(transMatrix, transCountMatrix, path, start, end): 
 
   for i in range(start, end): 
 
       workfile = path + str(i) + ".fasta" 
 
       with open(workfile, 'r') as readfile: 
           seq = readfile.read().replace('\n', '') 

           for j in range(0,len(seq)-1): 

               for k in range(4): 

                   for m in range(4): 

                       if seq[j]+seq[j+1] == COMBINATIONS[k][m]: 

                           transCountMatrix[k][m] += 1 

   print(transCountMatrix) 

 

   row_total = 0 

   for i in range(0,4): 

 

       for j in range(0,4): 

           row_total += transCountMatrix[i][j] 

 

   for i in range(0,4): 

       for k in range(0,4): 

           prob = transCountMatrix[i][k]/row_total 

           transMatrix[i][k] = round(prob, 4) 

 

 return transMatrix 
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The function calcMarkov should be called for both CpG islands dataset and non CpG islands 

dataset as below to get the state transition probabilities of both cpg model and non-cpg model. 

calcMarkov(transmatPlus,transmatPlusCount, filepath_cpg, start, end) 

calcMarkov(transmatMinus,transmatMinusCount, filepath_noncpg, start, end) 

 

Following code segment would implement the decode part of the CpG island predictor. 

log_ratio Function would output the log ratio value considering the value of the cpg model and 

non-cpg model. And get_log_value would take a sequence and for all of its possible transitions, 

log odd value would be calculated which was presented in Equation 3.9 in design stage. 
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def log_ratio(prev, curr): 

   prev_column = LETTER_ORDER.index(prev) 

   curr_row = LETTER_ORDER.index(curr) 

   plus_val = transmatPlus[prev_column][curr_row] 

   min_val = transmatMinus[prev_column][curr_row] 

 

   if plus_val == 0 and min_val == 0: 

       log_ratio_value = 0 

   elif plus_val == 0: 

       log_ratio_value = -2 

   elif min_val == 0: 

       log_ratio_value = 2 

   else: 

       ratio_value = plus_val/min_val 

       log_ratio_value = log(ratio_value,BASE) 

   return log_ratio_value 

 

def get_log_value(seq): 

   total = 0 

   for i in range(1,len(seq)): 

       if seq[i-1] in 'ATCG' and seq[i] in 'ATCG': 

           total += log_ratio(seq[i-1],seq[i]) 

   return total 
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4.7 Summary 

As previous chapter discussed on the design of the research, this chapter is used to describe the 

actual implementation that was used to implement that design. Initially a comprehensive 

summary was provided on the data collections used for this research. Then the chapter 

continues to present implementation details on how the preprocessing of ESTs, clustering of 

ESTs and motif discovery from ESTs were done. Finally, the actual implementation of CpG isand 

predictor was described with its code level details.  
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Chapter 5 - Results and Evaluation 

This chapter presents the results obtained along with their evaluation. Results achieved in each 

step of the proposed pipeline is discussed. At the end, the reasons behind the behaviour of the 

CpG island predictor is analyzed where finally a summary that compares the homology results 

along with a similar research is presented. 

 

5.1 Preprocessing of Expressed Sequence tags (ESTs)  

The dataset of Expressed Sequence tags of keratin-feeding clothes moths (Tineola) and keratin 

beetles (Trox) that are used in this study are taken from the research done by J. Hughes et al. 

[8]. As explained previously, they have first conducted a laboratory experiment and have then 

extracted the ESTs which were then submitted to GenBank database. They have claimed that 

they have preprocessed the ESTs before submitting to GenBank database. 

 

But, since the results obtained from processing ESTs greatly depend on the quality of ESTs, we 

decided to carry on a preprocessing stage of our own to check the quality. For that we used 

SeqTrim tool [32]. Using that, we performed a filtering of low-quality sequences and repeat 

masking with parameters values set to defaults (min_insert_size_paired=40, min_quality=20, 

min_insert_size_trimmed=40). However, none of the low quality ESTs was detected, hence the 

total dataset of ESTs was passed to next stage. 
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5.2 Clustering of ESTs 

By clustering ESTs, more similar sequences can be identified as clusters. Hence motifs become 

stronger when motifs are obtained from clusters as motifs are recurring patterns of sequences. 

As discussed in the implementation section, for the clustering of ESTs, wcd [22] EST clustering 

was used.  

 

In wcd, windows sizes should be properly adjusted according to the dataset. For this, E - value 

which is described as a measurement of evaluation in “section 3.5.2 E-value” was used for 

obtaining best clusters. Hence clustering was performed for different window sizes which is a 

user determined parameter for wcd tool. For window sizes below 58 and above 251 all the 

sequences clustered into a one cluster and hence the range between 58 and 251 windows sizes 

were considered to evaluate their E-values. Figure 5.1 is a graph that is drawn with the value of 

window size against the log of E-value for the respective window size.  

 

 

Figure 5.1 Window size vs Log(E value) graph 
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It can be seen that the graph is maintaining a flow that E-value was getting reduced when 

window size gets increased with an exception at the window sizes 110 and 200. The E-value 

gets to the minimum at 249 and remain constant. Hence we have selected the window size of 

250 for the clustering of ESTs with wcd clustering. Once clustered, as the result, two clusters 

were obtained. 

 

5.3 Motif discovery of ESTs 

For the process of discovery of motifs, we used MEME algorithm [34, 44]. For the Cluster One, 

two motifs could be obtained. They were having E-values as low as 6.3e-4045 and 3.1e-3747 

indicating how strong the obtained two motifs are. 

 

However, MEME only accepts only up to the clusters with length of 60,000 bp but the Cluster 

one is of length 76985 bp. As an alternative to MEME, when it comes to larger datasets, DREME 

algorithm can be used but it inherently looks for short motifs [35]. As a result of that, when 

DREME algorithm was used for that cluster, we ended up having many small motifs as too small 

as 5 lengths long and further all of them were having very high E-values such as 2.3e-157, 6.3e-

086, 1.3e-002, compared to the MEME algorithm which outputs a motif with an E-value of 6.3e-

4045 for the Cluster One. Hence we decided that continually using MEME algorithm for Cluster 

Two as well would be highly beneficial compared to DREME algorithm. When wcd tool clusters 

the ESTs it sorts the sequences based on the similarity. Based on that similarity order, we 

divided the cluster into two parts so that they have lengths which are in acceptable range for 

MEME algorithm. Finally we could obtain two motifs with E-values which are as low as 4.6e-

6456 and 2.3e-5589 supporting for the decision we made. 

 

Figures 5.3, 5.4, 5.6, 5.8 show a graphical representation of obtained motifs to show repetition 

percentages of each letter and Figures 5.5, 5.7, 5.9 show the locations of where each motif has 

occurred in the set of ESTs. (Note Appendix B gives a bigger view of motifs with rest of the 

locations of motifs) 
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They are represented graphically having, 

X - axis: Letter number of the motif (starting from 1 to length of the motif) 

Y- axis: Scale 0 – 2 (The height of the letter is drawn in this scale, representing the number of 

times a particular letter has occurred in ESTs of a cluster. Hence, if a letter reaches the tallest 

position that means that letter has occurred in all the ESTs of that cluster). Figure 5.2 shows a 

clear view of the two axes used. 

 

Figure 5.2: Zoomed-in of the two axes and how letter representation work 
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Cluster 1  

Motif 1 

     Figure 5.3: Letter representation of Motif 1 

 

Motif 2 

 

Figure 5.4: Letter representation of Motif 2 

 

 

Figure 5.5: Locations of Motif 1 and 2 in ESTs with the respective e-values 
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Cluster 2 

Part 1 

Motif 3 

 

Figure 5.6: Letter representation of Motif 3 

 

 

 

Figure 5.7: Locations of Motifs 3 
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Part 2 

Motif 4 

 

Figure 5.8: Letter representation of Motif 4 

 

 

 

 

Figure 5.9: Locations of Motif 4 with the respective e-values 
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Table 5.1: E-value of each motif 

Motif Number E-value 

Motif 1 3.1e-3747 

Motif 2 6.3e-4045 

Motif 3 4.6e-6456 

Motif 4 2.3e-5589 

 

Table 5.1 represents the E-values of all the motifs. Lower the E-value stronger the motifs are. 

When above E-values of motifs are analyzed, it can be seen that all the motifs obtained are 

strong representations of their respective clusters. Motif 3 is the strongest motif with respect 

to its cluster while other motifs are also having remarkably low E-values. Hence all these motifs 

are needed for an accurate alignment in the next step. 

 

5.4 Alignment of Motifs with Zebrafish Genome 

In this step, we aligned the obtained motifs along with the genome of zebrafish using BLAST - 

Basic Local Alignment Search Tool [48] as discussed in the implementation section, looking for 

the homology match with lowest E-value. 

 

Finally, Motif 4 obtained a significant hit with the genome of zebrafish with the lowest E-value 

of 0.058. Table 5.2 summarizes the evaluation metric of the alignment result with the genome 

of zebrafish.  

 

Table 5.2: Evaluation metric of alignment result  

E-value Score Percentage Identity 

0.058 41.0 93% 
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5.5 Visual Representation of Alignment 

Figure 5.10 presents a visual representation of alignment. Two letter lines in the top are 

genome of the zebrafish starting at the location 14 410 and ending at location 14 440 whereas 

the bottom is motif aligned along it which is being outlined by a rectangular shaped box. The 

reason why two lines are there in the genome is that both negative and positive strand of the 

genome is given here. One is the complementary of the other. Out of two lines of the genome, 

below line is the positive strand and upper one is the complementary of it. In the motif, what is 

shown in red is the mismatches with letters in the genome.  

 

 

Figure 5.10: Alignment result  

 

Table 5.3: BLAST Summary of alignment location of genome 

Description Value 

Organism Danio rerio (Zebrafish) 

Chromosome 14 

Clone 
 

CH73-315I10 

Region 14411..14437 
 

 

Table 5.3 gives the important facts of the alignment in the genome as given from BLAST. The 

match has occurred in the 14th chromosome of zebrafish. Zebrafish has 25 chromosomes in its 

genome. The match has come from the genome library clone named CH73-315I10 starting at 

the location 14411 and ending at the location 14437. 
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5.6 CpG island predictor  

The next task according to our design pipeline is finding whether the obtained homolog match 

is a gene or not. For that CpG island predictor has been trained so that it can then decode the 

starting region of the homology match obtained. 

 

5.6.1 Training results of model for CpG island predictor:  cpg sub model 

After training the Markov model with CpG island dataset of zebrafish, transition probability 

matrix for cpg model which is shown in the Table 5.4 was obtained. 

 

Table 5.4: State transition probability matrix for cpg model 

cpg  
sub model 

A T C G 

A 0.041  0.0256 0.0456 0.0718 

T 0.021 0.0371 0.0578 0.062 

C 0.062 0.069  0.1139 0.0717 

G 0.0604  0.046 0.099 0.1161 
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5.6.2 Training results of model for CpG island predictor: non - cpg sub model 

After training the Markov model for non CpG island dataset of zebrafish, the Table 5.5 

transition probability matrix for non - cpg model was obtained. 

 

Table 5.5: State transition probability matrix for non cpg model 

non - cpg 
sub model 

A T C G 

A 0.1058  0.0944  0.0584 0.0566 

T 0.0823  0.112 0.0524 0.071 

C 0.076 0.0573 0.036 0.0185 

G 0.0511 0.0541 0.041 0.0332 

 

If we analyze these two transition matrix, it can be clearly seen that the transitions that have 

happened in states C and G such as CC, CG, GG, GC are having higher value in the cpg model 

than in the non-cpg model successfully representing the features of CpG islands. 

 

 

5.6.3 Evaluation Metrics for CpG island predictor  

The evaluation metrics values presented in Table 5.6 was obtained using the testing dataset of 

CpG and non CpG islands of zebrafish. 

 

Table 5.6: Evaluation Metrics 

 Percentage Value 

Accuracy 93.52% 

Sensitivity 89.74% 

Specificity 95.65% 

Precision 92.11% 
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According to these values in Table 5.6, it can be said, without a doubt, that CpG island predictor 

shows high performance. However, the model has a relatively low sensitivity of 89.74% 

compared to the specificity which is 95.65%. This indicates that the model is more capable of 

correctly predicting a non CpG island than a CpG island. Two possible reasons for this behaviour 

of CpG island predictor can be, 

 

1. The dataset for non CpG island is approximately as twice larger as the dataset of CpG 

island. As described earlier, non CpG islands dataset contains 210 sequences (93,810 

bp) where CpG island dataset has only 116 sequences (58,914 bp). Hence the non-cpg 

sub model has gained more opportunity to be trained with more data and get fitted 

more accurately for the properties of non CpG islands than that of cpg sub model. 

 

2. A few CpG islands may have naturally failed to show a clear difference against the non 

CpG islands and such biological sequences may not adhere to the statistical properties 

that an artificial model tries to fit them to.  

 

 

5.6.4 Decoding the Starting region of the homology match obtained  

As the final step of the designed pipeline, the starting region of the homology match is passed 

through CpG island predictor to be got decoded as a CpG island or otherwise. As we have 

identified in the literature, 200 bp length definition is used as the length of CpG islands which is 

needed to decide the length of the starting region sequence that should be passed through the 

CpG island predictor. 

 

The match has started at location 14411 in the genome sequence. The sequence that starts at 

14411-200 = 14211 and 200 long, is selected to be passed through CpG island predictor.  
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That sequence is, 

> 
acagtttaaagatatgcgctataggtgaattgaataaactaaattgttcattgtgtatgtgtgtgaataagtatgtatggatgtttcccagt
actgggttgcagctggaagggcatctgctgtgtaaaacatgctggataagttggcagttcattccactgtggcaacccatgatgaataaa
ggggctaagggaaaatga 
 

We could obtained an interesting observation when this sequence is decoded through the CpG 

island predictor. The sequence happened to be having CpG island properties as predicted by 

the model which suggests that the homology match we obtained has properties to be claimed 

as a potential keratin digestion gene in zebrafish.  In other terms, we can also consider it as 

reaching the highest goal of gene prediction research in bioinformatics. 
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5.7 Summary 

In this Chapter, the results obtained from implementation of the proposed design was 

discussed. The most significant achievement of this research is that at the end of proposed 

pipeline, we could find a potential keratin digestion gene of zebrafish. To summarize what we 

have done, as in gene prediction in bioinformatics that is based on the homology discovery, we 

started with a known EST dataset for keratin digestion and once a homology was found, it was 

then evaluated with the statistical measure of E-value. Such homology is claimed to performing 

the same functionality as the first organism which is keratin digestion in this context.    

 

We would like to commence the discussion of the results by comparing our result against 

closely related researches in the field. When it comes to computational prediction for keratin 

digestion, no other direct research could be found. The research done by J. Hughes et al. [8] is 

from which we took the EST data for keratin digestion. Their main focus laid on extracting gene 

expression in the gut of keratin-feeding clothes moths (Tineola) and keratin beetles (Trox) 

which turned it more towards a biological experiment. However, they have made a general 

homology search with proteases (some claim that keratin digestion enzymes are serine 

proteases and that was the reason to match against proteases) and have obtained percent 

identical residues of 22.4% for Tineola and 6.8% for Trox. Even though the percent identical 

residue values cannot be directly compared as they vary according the database sizes they are 

match against, they seem to get poorly low results as they have not built a comprehensive 

pipeline for homology discovery but have only performed the alignment step itself. On the 

other hand, like how we have predicted a potential gene, they anyway fail to predict a gene as 

they have not used genomes for their alignment other than presenting a homology match. 
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Chapter 6 – Conclusions 

In this Chapter, the furthering understanding of the research objectives is explored with 

conclusions. Next, it would present the contributions done by the research and then limitations 

that were encountered were also analyzed. Chapter would commence the opportunities opened 

from this research for future researches. 

 

6.1 Introduction 

Keratin is an insoluble protein that is tightly packed which has resulted in having a great 

mechanical stability. Therefore keratin processing has become a burden to industries that 

involve keratin processing. Despite that, some organisms exhibit the natural capability of 

degrading keratin. This research is driven by this interesting natural observation. Particularly, it 

focuses on the keratin digestion capability in zebrafish that belongs to danionian group in the 

event of scale digestion as identifying responsible gene for keratin digestion can then lead to 

development of enzymes that vastly help keratin processing industries.  

 

6.2 Conclusions about research objectives 

The aim of this research was to explore whether there exists any potential undiscovered genes 

that have the capability of keratin digestion on scale eating in zebrafish. Hence a homology 

discovery is performed between the genome of zebrafish and the ESTs of keratin-feeding 

clothes moths and keratin beetles. As fish and insects are highly different organisms, this 

research builds a comprehensive pipeline for gene prediction fulfilling each and every objective 

we identified at the initial phase of the study. 

The first objective of this research was to obtain motifs in the clusters of expressed sequence 

tags of clothes moths and keratin beetles that perform the function of keratin digestion. A 
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detailed literature survey was carried out on available EST clustering algorithms for selecting 

the best suiting algorithm for the ESTs in the context of this research. Using the MEME 

algorithm motifs were obtained.  

 

The second objective was to obtain homology match between above identified motifs and the 

genome of zebrafish for the function of keratin digestion. This is a crucial one as finding such 

homology match largely contributes to the bioinformatics research field as none of the research 

could be found that utilizes a computational approach on keratin gene prediction. As a result of 

the comprehensive computational pipeline for gene prediction that was built, we could 

successfully obtain homology match with an E value that is as less as 0.058 despite the fact that 

the homology discovery was performed between two highly different organisms. Generally, 

highly different organisms show a lesser similarity between sequences that perform same 

functionality than the organisms of similar group as their phylogenetic and morphological 

structures have evolved separately.  

 

Design and develop a model to analyze a homology match in order to claim it as a potential 

undiscovered gene was the third objective. The model that was developed utilizes the CpG 

island properties of the starting region of the genes. Sequence analysis of CpG island prediction 

has been seen as a Markov problem and the model works with an accuracy of 93.5% indicating 

the suitability of using Markov models for the CpG island prediction in zebrafish. Finally, the 

model predicted the starting region of the homology match obtained, having properties of CpG 

island of zebrafish making the finding more intriguing.  

 

Hence it can be concluded that the homology match we found is a potential gene for keratin 

digestion in scale eating. Nevertheless, as in any gene prediction research, laboratory 

experiment should be conducted in order to bring the found gene from “computationally 

predicted” state to the “biologically verified” state.  
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6.3 Contributions 

One of the major contributions made through this research is the computational prediction of 

potential keratin digestion gene in zebrafish. Other than that, this research significantly 

contribute to the research field of bioinformatics and computer science as to the best of our 

knowledge, this is the first attempt on, 

1. Computational gene prediction for keratin digestion 

2. Homology discovery performed on lepidophagous behaviour of zebrafish and 

3. Development of a Markov model for CpG island prediction in zebrafish 

 As discussed in the literature, with regard to the keratin digestion, only the biological 

experiments can be found that involves isolating keratinase but then again they are only limited 

to the microorganisms such as bacteria and fungi. Lepidophagous behaviour of danion group 

including zebrafish is examined biologically through analyzing their natural diet and hence 

genes responsible for that cannot be identified. Furthermore, CpG island properties of zebrafish 

have been compared against other organisms, but no model could be found in order to 

particularly predict the CpG islands of zebrafish.  
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6.4 Limitations and Implications for further research 

One of the major limitations faced during the research is the availability of the datasets. For an 

example data driven approaches such as the built computational pipeline, CpG island prediction 

model could have been made further improved if more annotated data were available. But 

considering the rapid pace of biological sequences becoming available, more data required 

might become available in near future letting the opportunity to explore more on keratin 

digestion genes in different organisms. 

Another limitation is that the model builds to check whether the obtained match is a gene or 

not, is only based on the CpG island properties of starting region of genes. But to more 

accurately predict the starting and ending location of a gene, different computational 

prediction models can be developed based on different features of the genes. One such 

research area is the machine learning approaches for the prediction of intron and exon in 

biological sequences to identify the starting and ending regions of genes.  

 

Furthermore, the obtained potential keratin digestion gene has opened the gates for many 

biological researches as well. One obvious research suggestion is performing biological 

experiments on verifying the gene. Then the researches can be extended to develop the 

enzymes based on the finding which are essentially required for keratin processing industries.  
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Appendix A: Code Listings 

A.1 Building of the Markov Model 
 

LETTER_ORDER= ['A', 'T', 'C', 'G'] 

LETTER_SET = [] 

 

transmatPlus = [ 

[0, 0, 0, 0], 

[0, 0, 0, 0], 

[0, 0, 0, 0], 

[0, 0, 0, 0] 

] 

 

transmatPlusCount = [ 

[0, 0, 0, 0], 

[0, 0, 0, 0], 

[0, 0, 0, 0], 

[0, 0, 0, 0] 

] 

 

transmatMinus = [ 

[0, 0, 0, 0], 

[0, 0, 0, 0], 

[0, 0, 0, 0], 

[0, 0, 0, 0] 

] 

 

transmatMinusCount = [ 

[0, 0, 0, 0], 

[0, 0, 0, 0], 

[0, 0, 0, 0], 

[0, 0, 0, 0] 

] 

COMBINATIONS = [ 

['AA', 'AT', 'AC', 'AG'], 

['TA', 'TT', 'TC', 'TG'], 

['CA', 'CT', 'CC', 'CG'], 

['GA', 'GT', 'GC', 'GG'] 

   ] 

 

filepath_cpg = "/home/research/DV766842–DV767724/cpg/cpgDataset/" 

filepath_noncpg = "/home/research/DV766842–DV767724/cpg/noncpgDataset/" 
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def calcMarkov(transMatrix, transCountMatrix, path, start, end): 

 

   for i in range(start, end): 

 

       workfile = path + str(i) + ".fasta" 

 

       with open(workfile, 'r') as myfile: 

           seq = myfile.read().replace('\n', '') 

           for j in range(0,len(seq)-1): 

               for k in range(4): 

                   for m in range(4): 

                       if seq[j]+seq[j+1] == COMBINATIONS[k][m]: 

                           transCountMatrix[k][m] += 1 

   print(transCountMatrix) 

 

   row_total = 0 

   for i in range(0,4): 

 

       for j in range(0,4): 

           row_total += transCountMatrix[i][j] 

 

 

   for i in range(0,4): 

       for k in range(0,4): 

           prob = transCountMatrix[i][k]/row_total 

           transMatrix[i][k] = round(prob, 4) 

 

 

   return transMatrix 

 

print(calcMarkov(transmatPlus,transmatPlusCount, filepath_cpg, start, end)) 

 

print(calcMarkov(transmatMinus,transmatMinusCount, filepath_noncpg, start, end)) 
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A.2 Decode a given sequence using log odd ratio 
 

from math import log 

 

LETTER_ORDER= ['A', 'T', 'C', 'G'] 

BASE = 10 

filepath_cpg = "/home/research/DV766842–DV767724/cpg/cpgDataset/" 

filepath_noncpg = "/home/research/DV766842–DV767724/cpg/noncpgDataset/" 

 

def log_ratio(prev, curr): 

   prev_column = LETTER_ORDER.index(prev) 

   curr_row = LETTER_ORDER.index(curr) 

   plus_val = transmatPlus[prev_column][curr_row] 

   min_val = transmatMinus[prev_column][curr_row] 

 

   if plus_val == 0 and min_val == 0: 

       log_ratio_value = 0 

   elif plus_val == 0: 

       log_ratio_value = -2 

   elif min_val == 0: 

       log_ratio_value = 2 

   else: 

       ratio_value = plus_val/min_val 

       log_ratio_value = log(ratio_value,BASE) 

   return log_ratio_value 

 

 

def get_log_value(seq): 

   total = 0 

   for i in range(1,len(seq)): 

       if seq[i-1] in 'ATCG' and seq[i] in 'ATCG': 

           total += log_ratio(seq[i-1],seq[i]) 

   return total 
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A.3 Generate non CpG islands dataset 
 

workfile = "/home/research/zebrafishDataset/Danio_rerio.GRCz10.dna.chromosome.10.fa" 

write_path = "/home/research/DV766842–DV767724/cpg/noncpgDataset/" 

 

LENGTH = 450 

with open(workfile, 'r') as myfile: 

   seq = myfile.read().replace('\n', '') 

 

from random import randint 

 

for i in range(1,211): 

   write_file = write_path + str(i) + '.fasta' 

   rand_start = randint(0, genome_length - 500) 

   end = rand_start + LENGTH 

   file = open(write_file, 'w') 

   file.write(seq[rand_start:end]) 
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A.4 Obtain false positives and false negatives for CpG island 

prediction 
 

def run_dataset(filepath,range_start, range_end,tag): 

   FP = 0 

   FN = 0 

   for i in range(range_start, range_end): 

       workfile = filepath + str(i) + ".fasta" 

 

       with open(workfile, 'r') as readfile: 

           seq = readfile.read().replace('\n', '') 
 
       
 
           if (tag == "cpg" and get_log_value(seq) < 0): 
               print('wrong') 

               FN += 1 

 

           elif (tag == "noncpg" and get_log_value(seq) > 0): 

 

               FP +=1 

   if (tag == "cpg"): 

       return FN 

   elif (tag == "noncpg"): 

       return FP 
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A.5 Obtain confusion matrix 
 

def get_confussion_matrix(P, N, FP, FN): 

   TP = P - FP 

   TN = N - FN 

   Accuracy = (TP + TN) / (P + N) 

   Sensitivity = (TP) / (TP + FN) 

   Specificity = (TN) / (FP + TN) 

   Precision = (TP) / (TP + FP) 

 

   print("Accuracy = ", Accuracy) 

   print("Sensitivity = ", Sensitivity) 

   print("Specificity = ", Specificity) 

   print( "Precision = ", Precision) 

 

P = 116 - 78 

N = 211 - 141 

 

 

get_confussion_matrix(P, N, FP, FN) 
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Appendix B: Figures  

B.1 Motifs 
 

Four motifs are represented in the next page. 
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Motif 1      Motif 2  Motif 3       Motif 4 
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B.2 Locations of the motifs in Cluster One 
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B.3 Locations of the motifs in Cluster Two - Part 1 
 

 

 

B.4 Locations of the motifs in Cluster Two - Part 2 
 

 


