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Abstract 

Contracts play a major role in financial markets. Financial contracts vary in different 

aspects from one to another and as such, they need proper formalization and mechanism for 

valuation. Peyton Jones have introduced a contract descriptive language that can be used for 

both representation and valuation of financial contracts. This language has become popular 

among the research community and hence many improvements and applications have been 

made with this language since its introduction.  

 This research aims to explore different processing activities (value processes) that can 

be applied to Peyton Jones’ contract descriptive language. By doing so the language becomes 

more powerful from its functionalities. In this research, we mainly explore two such processing 

activities. Those are, generating a calendar for contractual obligations and valuating stochastic 

processes using Monte Carlo simulation. 

 Creating a model to generate a calendar for a contract written in Peyton Jones’ contract 

descriptive language helps users to track the timeline of the contract. We introduce a model 

that has the capability of generating a calendar for a given contract. This model consists of 

calendar definition, a set of combinators for calendars and a set of evaluation semantics for the 

conversion from a contract to the calendar. 

 Peyton Jones have proposed a valuation model for their contract descriptive language. 

They used a lattice valuation model to calculate the present value of future cash flows of the 

contracts. They have claimed that instead of this lattice valuation model, other valuation 

techniques can be used. Our aim is to support this claim by creating a model to valuate 

contracts in Peyton Jones’ contract descriptive language using Monte Carlo simulation. A simple 

Monte Carlo simulation method described by Boyle for contracts is used for valuation of 

contracts. The Monte Carlo simulation and evaluation semantics of contracts are implemented 

with stochastic processes.  
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Preface 

This thesis focuses on introducing different processing activities related to Peyton Jones’ 

contract descriptive language. It is mainly based on the work done by Peyton Jones et al. in 

developing the domain specific language for financial contracts. As such, we used their 

language components as the basis of our designs. This thesis summarizes their work in Chapter 

1.  

Chapter 3 contains proposed models from these researches. Calendar model proposed 

in this chapter is entirely my work and it only relies on Peyton Jones’ contract descriptive 

language for representations of contracts. The concept behind this model has not been 

proposed in any other study related to this research area. Proposed stochastic process 

valuation semantics are a modification of valuation semantics introduced by Peyton Jones et al. 

and it uses the Monte Carlo simulation method to discount the value of a contact. This 

valuation approach has never been directly combined with evaluation semantics before. It is a 

major achievement of this research.  

Chapter 4 contains a description for implementation of the Peyton Jones’ contract 

descriptive language and implementation of the proposed model. Contract Descriptive 

Language implementation is a slight modification of Peyton Jones et al. implementation. All the 

implementations of proposed models are done from the scratch and not been present in any 

other study.  

 

  

  



iv 

 

Acknowledgement 

I would like to express my sincere appreciation to my principal Supervisor, Dr. Chamath 

Keppitiyagama and Co-supervisor Dr. Kasun Gunawardana for their constant guidance and 

encouragement, without which this work would not have been possible. For their unwavering 

support, I am truly grateful. I am also grateful to all lecturers in University of Colombo School of 

Computing, especially Dr. Mindika Premachandra and Dr. K. D. Sandaruwan for their support 

towards the successful completion of this research.  

My sincere thanks go out to our research coordinator Dr. H.E.M.H.B.Ekanayake for his 

encouragement and support in keeping this research focused and on-track. I extend my 

gratitude to Dr. Damith Karunarathne and Dr. Ruwan Weerasinghe for the immense guidance 

they offered me by providing their valuable feedback as examiners. Their advice and 

suggestions encouraged me to carry out this one year research project more successfully and 

present a useful outcome at the end. 

Foremost my special thanks to my parents for providing me a solid foundation in edu 

cation and all the courage and love gave me on every moment. They are the guiding stars which 

strengthen me to become the person who I am today.  

Finally, I express my sincere gratitude for all my friends who supported and encouraged 

me on all cause of challenges I faced during this research. All the help given by everyone to 

make this research a success owns my great appreciation. 



v 

 

Table of Contents 

Declaration .............................................................................................................. i 

Abstract .................................................................................................................. ii 

Preface .................................................................................................................. iii 

Acknowledgement ................................................................................................. iv 

Table of Contents .................................................................................................... v 

Table of Figures ..................................................................................................... ix 

Acronyms ............................................................................................................... x 

Chapter 1 - Introduction ....................................................................................... 1 

1.1 Background to the Research ................................................................................................. 1 

1.1.1 Financial Market ................................................................................................................. 1 

1.1.2 Financial Contracts ............................................................................................................. 1 

1.1.3 Informal Contract Management ........................................................................................ 2 

1.1.4 Domain Specific Language (DSL) ........................................................................................ 3 

1.1.5 Peyton Jones’ Contract Descriptive Language ................................................................... 3 

1.1.6 Financial Contract Valuation .............................................................................................. 5 

1.1.7 Monte Carlo valuation for options ..................................................................................... 5 

1.2 Research Problem and Research Questions ......................................................................... 6 

1.2.1 Research Questions ............................................................................................................ 6 

1.3 Aims and Objectives .............................................................................................................. 6 

1.4 Delimitations of Scope .......................................................................................................... 7 

1.5 Motivation for the research .................................................................................................. 7 

1.6 Methodology ......................................................................................................................... 8 

1.7 Outline of the rest of the desertation ................................................................................... 8 



vi 

 

Chapter 2 - Literature Review ............................................................................. 10 

2.1 Related work........................................................................................................................ 10 

2.2 Contract Management ........................................................................................................ 12 

2.2.1 Compositional Specification of Commercial Contracts .................................................... 13 

2.3 Evaluating Value Processes ................................................................................................. 13 

2.3.1 Valuating Stochastic Processes ........................................................................................ 16 

2.3.2 Probabilistic Functional Programming Library (PFPL) for Haskell .................................... 16 

2.3.3 Representing Stochastic Processes .................................................................................. 17 

2.3.4 Monte Carlo Simulation for Valuation ............................................................................. 17 

2.3.5 American options and Monte Carlo simulation ............................................................... 18 

Chapter 3 - Design .............................................................................................. 19 

3.1 Calendar Model ................................................................................................................... 19 

3.1.1 Calendar Definition........................................................................................................... 19 

3.1.2 New Data Types ................................................................................................................ 20 

3.1.3 Evaluation Semantics ....................................................................................................... 20 

3.1.4 Combinators for Calendar ................................................................................................ 22 

3.2 Monte Carlo simulation for option pricing .......................................................................... 25 

3.2.1 Representing Stochastic Processes .................................................................................. 25 

3.2.2 Interest Rate Model ......................................................................................................... 26 

3.2.3. Simulating Contract Value ............................................................................................... 26 

3.2.4 Contract Evaluation Semantics......................................................................................... 27 

3.2.5 Combinators for Stochastic Processes ............................................................................. 28 

3.2.4 Monte Carlo simulation .................................................................................................... 29 

Chapter 4 - Implementation ............................................................................... 31 

4.1 Why Haskell? ....................................................................................................................... 31 

4.1.1 Lazy evaluation ................................................................................................................. 31 



vii 

 

4.2 Peyton Jones’ Contract Descriptive Language .................................................................... 32 

4.2.1 Contract ............................................................................................................................ 32 

4.2.2 Time .................................................................................................................................. 33 

4.2.3 Currencies and amounts .................................................................................................. 33 

4.2.4 Contract combinators ....................................................................................................... 34 

4.2.5 Observables and combinators for observables ................................................................ 34 

4.3 Calendar evaluation model implementation ...................................................................... 35 

4.3.1 Combinators for Calendar ................................................................................................ 35 

4.3.2 Contract evaluation semantics for Calendar .................................................................... 37 

4.4 Valuate Stochastic Processes .............................................................................................. 38 

4.4.1 Random Path Generation ................................................................................................. 38 

4.4.2 Implementing Interest Rate Paths ................................................................................... 38 

4.4.3 Discounting Function ........................................................................................................ 39 

4.4.4 Evaluation Semantics ....................................................................................................... 39 

4.4.5 Combinators for Stochastic Processes ............................................................................. 40 

Chapter 5 - Evaluation and Conclusion ................................................................ 41 

5.1 Example Contract calendar Evaluation ............................................................................... 41 

5.1.1 Calendar Generation Model Evaluation ........................................................................... 43 

5.2 Example Contract Monte Carlo Simulation ......................................................................... 43 

5.3 Conclusion ........................................................................................................................... 45 

5.4 Limitations ........................................................................................................................... 46 

5.5 Future Work ........................................................................................................................ 46 

References ............................................................................................................ 47 

Appendix A ........................................................................................................... 49 

Code: Language ......................................................................................................................... 49 

Code: Calendar Model ............................................................................................................... 51 



viii 

 

Code: Monte Carlo Simulation .................................................................................................. 52 

 

 
 
 
  



ix 

 

Table of Figures 

Figure 1: Primitives for Defining Contracts ..................................................................................... 4 

Figure 2: Primitives for Defining Observables ................................................................................. 5 

Figure 3: Background Summary .................................................................................................... 11 

Figure 4: Related Work .................................................................................................................. 11 

Figure 5: Contract Management ................................................................................................... 12 

Figure 6: Evaluation Semantics for Contracts ............................................................................... 14 

Figure 7: Evaluation Semantics for Observables ........................................................................... 14 

Figure 8: A Short-Term Interest Rate Evaluation .......................................................................... 15 

Figure 9: A Valuation Lattice ......................................................................................................... 15 

Figure 10: Contract Valuation ....................................................................................................... 16 

Figure 11: An Event in the Calendar .............................................................................................. 20 

Figure 12: Contract evaluation semantics (Final Model) .............................................................. 21 

Figure 13: Contract evaluation semantics (Alternative Model) .................................................... 22 

Figure 14: zeroCal and oneCal Combinators ................................................................................. 23 

Figure 15: giveCal Combinator ...................................................................................................... 23 

Figure 16: scaleCal Combinator ..................................................................................................... 24 

Figure 17: zipCal Combinator ........................................................................................................ 24 

Figure 18: shift Combinator ........................................................................................................... 25 

Figure 19: Interest Rate Paths Simulation ..................................................................................... 27 

Figure 20: Contract Parsing for Calendar ...................................................................................... 42 

Figure 21: Contract Parsing for a Stochastic Process. ................................................................... 44 

  



x 

 

Acronyms 

FCs   Financial Contracts 

FDs   Financial Derivatives  

FMs   Financial Markets 

FP   Functional Programming 

DSL   Domain Specific Language 

DSELs   Domain Specific Languages 

HCCL   Haskell Contract Combinator Library 

LSEG   London Stock Exchange Group 

SPL   Stochastic Process Language 

PFPL  Probabilistic Functional Programming Library 

CS   Computer Science 

USD   US Dollar 

AUD   Australian Dollar 

NZD   New Zealand Dollar 

VP   Value Process 

SP   Stochastic Process 

SVP   Stochastic Value Process 

ZCB   Zero Coupon Bond  



1 

 

Chapter 1 -  Introduction 

1.1 Background to the Research 

1.1.1 Financial Market 

A financial market is a context where people trade financial securities, commodities, 

and other fungible1 items of value at low transaction costs and at prices that reflect supply and 

demand [1]. Financial markets do thousands of transactions per second. There are many kinds 

of financial instruments traded in those transactions. 

1.1.2 Financial Contracts 

In financial markets, one of the main concerns is to legally document and process 

financial derivatives. Some financial derivatives are so complex and there is no unified format 

to represent them [1]. A financial derivative(FD) is a contract between two or more parties 

based on a financial asset [2]. And many different types of FDs are there in the world and it is 

cumbersome to manage each of them separately. Because there is no universal way to manage 

them and different derivatives have different formats. 

 

Following are some financial derivatives which are commonly traded in financial markets, 

• Zero Coupon Bonds - A zero-coupon bond, is a debt security that doesn't pay interest 

but is traded at a deep discount [2]. 

• European Options - A European option is an option that can only be exercised at the end 

of its life, at its maturity [3]. 

                                                      

1 Interchangeability with other individual goods or assets of the same type. 
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• American Options2 - An American option is an option that can be exercised anytime 

during its life. American options allow option holders to exercise the option at any time 

prior to and including its maturity date [4]. 

• Asian Options - An Asian option is an option whose payoff depends on the average price 

of the underlying asset over a certain period of time as opposed to at maturity [5]. 

These contacts can get combined together to generate complex contracts. Consider the 

following story of a contract. 

“An investor bought an American call option on 1st Jan 2017 on stock XYZ with a strike price 

of 100GBP. And need to pay a premium of 5GBP on 1st Feb 2017. This call option will get 

expired on 1st July 2017” 

This contract consists of an American option and a zero coupon bond. Likewise, 

contracts can combine to generate new contracts. 

1.1.3 Informal Contract Management 

There are many problems that can arise in connection with informal modeling and 

representation of contracts and their execution. According to Andersen, J. et al. [1] those are (i) 

disagreement on what a contract actually requires; (ii) agreement on contract, but 

disagreement on what events have actually happened (event history); (iii) agreement on 

contract and event history, but disagreement on remaining contractual obligations; (iv) breach 

or malexecution of contract; (v) entering bad or undesirable contracts/missed opportunities; 

(vi) bad coordination of contractual obligations with production planning and supply chain 

management; (vii) impossibility, slowness or costliness in evaluating state of company affairs. 

As an example of consequences of those, a major French investment bank has costs of 

about 50 million. Euro per year and about half due to legal costs in connection with contract 

disputes and the other half due to malexecution of financial contracts [1]. 

Most of the contracts are comprised of smaller subcontracts. Those composite contracts 

are harder to represent and valuate. When different processing activities need to be applied to 

different contracts each contract need to have a separate model for each processing activity. So 

from the look of it, we can say that it is very cumbersome. In the industry, if we can represent 

                                                      

2 Thorough analysis will be done in section 3.3 
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all contracts in the world in a single format, then the amount of work that needs for processing 

will reduce drastically. 

1.1.4 Domain Specific Language (DSL) 

Today DSLs are very common in the financial industry. There can be many advantages of 

using a DSL over a general purpose language and one of them is, high level of abstraction. 

According to P.Hudak [6], there are many different ways that can be used to build a DSL. DSL 

which proposed by Peyton Jones et al. [7] is a Domain Specific Embedded Language (DSEL). 

DSEL is a DSL, which implemented using another general purpose language. One of the main 

advantages of this method is that DSEL inherits characteristics from its mother language. 

Languages such as MetaOCaml, Template Haskell, and C++ are proven to be good candidates 

for building DSELs [8].  

1.1.5 Peyton Jones’ Contract Descriptive Language 

Peyton Jones et al. [7] has proposed a language which consists of combinator libraries 

for observables and contracts. According to this language observable is a time-varying quantity 

such as interest rate. In the contract language, the observables are defined as data whose type 

is Obs a, where a can be any type. And a combinator for contracts is a function which always 

returns a contract. 

This contract descriptive language provide greater flexibility in representing contracts. It 

is a powerful tool so that it can preserve important information about the contract in a single 

line. Let’s consider two simple contracts called C1 and C2. 

C1 = Receive $100 on date t1 

C2 = Transfer £200 on date t2 

From the Peyton Jones’ contract descriptive language, we can represent these two 

contracts as follows, 

 C1 = scaleK 100 (get (truncate t1 (one USD))) 

 C2 =  scaleK 200 (give (truncate t2 (one GBP))) 

 When compared with alternative methods, where they need a large amount of code to 

do the same. And when it’s come to comparing two contracts this language made it very easy 



4 

 

and efficient. Because both these contracts are defined using the same set of combinators, it is 

easy to compare them together. In this case, scaleK, truncate and one are common to both 

contracts and get (represents a cash inflow), give (represents a cash inflow) are unique for each 

contract. Another important feature of this language is that contracts can be combined 

together to form new contracts. As an example, a new contract C3 can be defined as follows, 

 C3 = and C1 C2 

        C3 = and (scaleK 100 (get (truncate t1 (one USD))))  

  (scaleK 200 (give (truncate t2 (one GBP)) 

  ) 

C3 states that its contract holder receives $100 at t1 and transfer of £200 at t2. Likewise, any 

contract can be defined using this contract descriptive language.     

Figure 1 Shows 10 combinators for contracts introduced by Peyton Jones et al. [7]. As 

for observables, a combinator for observables is a function which always returns an observable. 

Figure 2 Shows 5 combinators for observables introduced by Peyton Jones et al. [7]. 

 

Figure 1: Primitives for Defining Contracts 
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Figure 2: Primitives for Defining Observables 

1.1.6 Financial Contract Valuation 

There are many financial models that can be used to valuate financial contracts. Among those 

models, only three families of numerical methods are widely used in industry. Those are partial 

differential equations, Monte Carlo Simulation, and lattice methods. Using the language 

proposed by Peyton Jones et al. [7], they have created a model to valuate contracts using the 

lattice valuation method. 

1.1.7 Monte Carlo valuation for options 

Monte Carlo model is widely used in valuating options [4]. Steps used in Monte Carlo 

valuation for options contracts, 

• Generate a large number of possible, but random, price paths for the underlying (or 

underlying) via simulation. 

• Then calculate the associated exercise value of the option for each path. 

• These payoffs are then averaged and discounted to today. 

• This result is the value of the option. 

One advantage of using Monte Carlo simulation over other simpler analytical models is that 

it provides more statistical information about the discounted value [9].  
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1.2 Research Problem and Research Questions 

1.2.1 Research Questions 

1.2.1.1 Question 1 

 

Is it possible to create a model to generate the calendar3 for a contract written in 

Peyton Jones’ contract descriptive language? 

 

Calendar of a contract is a time line that represents every transaction that scheduled to 

happen. Buyer, Seller and the Issuer of a contact need to keep track of the time line of that 

contract. Generating a calendar will benefit all associated parties. 

 

1.2.1.1 Question 2 

 

Can Peyton Jones’ contract descriptive language be used to valuate contracts using 

Monte Carlo simulation? 

 

Peyton Jones et al. [7] showed that contracts in proposed language can be valuated 

using the lattice valuation model. And he stated that the language can be used to evaluate 

other processing activities as well. But has not been proved. 

1.3 Aims and Objectives 

The intention of this research is to discover possibilities of applying different processing 

activities to Peyton Jones’ contract descriptive Language. 

 

• Create a model to generate the calendar for a contract written in Peyton Jones’ contract 

descriptive language. 

                                                      

3 Calendar is an action schedule of a contract that consists of rights and obligations of that contract. A Proper 
definition will be given in section 5.1.1. 
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• Create a model to represent stochastic processes. 

• Create a model to generate Monte Carlo simulation for contract value. 

• Valuate Options described in Peyton Jones’ contract descriptive language using Monte 

Carlo simulation. 

1.4 Delimitations of Scope 

For the first research question, proposed models work only on Peyton Jones et al. [7] 

proposed language. Because of the time constraint, following financial derivatives are only 

considered, 

• Zero Coupon Bonds 

• American Options 

• European Options 

And when complex contracts are needed, only previously mentioned contracts are 

combined.  

All the implementations are done using language Haskell and test only for that language. 

1.5 Motivation for the research 

Financial contracts play one of the most important roles in the financial world. Thus, 

financial contracts have a high frequency of use in the field of finance. Among the vast variety 

of financial contracts that are being created every day, most of them end up being very 

complex due to their requirement of being able to represent various business needs and 

agreements. Further, these complex business contracts contain subcontracts that have their 

own life cycles. 

Peyton Jones’ contract descriptive language was developed with the intention of making 

it easier to represent and valuate those contracts. But one of the main restriction that can be 

seen in that research is that the valuation of these contracts has been done only using lattice 

valuation model. In the industry, other valuation models like Monte Carlo valuation are very 

popular. Other than valuation, there are many processing activities that need to be done for 

financial contracts. 
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One of the main motivational factors of this research is the keynote speech done by 

Jean-Marc Eber at The Domain-Specific Languages for Financial Systems (DSLFIN) 2013 

workshop [10]. In this speech, he empathized the need of a calendar which can detect all 

meaningful events that will or may happen in the future with regards to financial contracts. 

The main reason for selecting Peyton Jones’ contract descriptive language is that it is the 

root of most of the DSLs in the financial market. And it was well documented and many 

researchers have tested it for different types of financial contracts. 

 

1.6 Methodology 

Peyton Jones et al. [7] has used a precise and scientific methodology when expressing 

contract valuation. For this research, the same method is followed when building other 

processing activities. This methodology can be divided into two layers. 

• Abstract evaluation semantics 

• Concrete implementation 

First, a mathematical model is created for the conversion of any contract written in 

Peyton Jones’ contract descriptive language into a process. Then operations are defined over 

those processes. Then comes the implementation of those processes to match to a real-world 

activity. 

1.7 Outline of the rest of the desertation  

In Chapter two, Literature Review, illustrates the current status of the research domain, 

especially targeting towards the Peyton Jones’ contract descriptive language and how contract 

management is done. Then this chapter reviews different valuation methods used for Peyton 

Jones’ contract descriptive language. Finally, it discusses representation and valuation of 

stochastic processes. 

 

In Chapter three, Design, consist of language models we have proposed and justifications for 

each design component. The first half of this chapter proposes a design of a model to generate 
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a calendar for Peyton Jones’ contract descriptive language with justifications. And in the second 

part, we introduce to a language model which can use to simulate the contract value of a 

contract written in Peyton Jones’ contract descriptive language with Monte Carlo Method. All 

the design decisions are justified.  

 

In Chapter four, Implementation, illustrate an implementation of the Peyton Jones’ contract 

descriptive language and models proposed in Chapter 4. All the implementations are done 

using the language Haskell. This chapter also introduces Haskell and its lazy evaluation 

principles. Codes are provided to illustrate important implementation decisions. 

 

In Chapter five, Evaluation and Conclusion, example contract evaluations are done for models 

introduced in Chapter 4 as proof of concept. This chapter gives a conclusion for research 

questions and research objectives based on findings. Next, it describes some limitations in 

proposed models. Finally, this chapter concludes by introducing toward some future research 

and experiments possible. 
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Chapter 2 -  Literature Review 

This chapter illustrates the current status of the research domain, especially targeting 

towards the Peyton Jones’ contract descriptive language and how contract management is 

done. Then this chapter reviews different valuation methods used for Peyton Jones’ contract 

descriptive language. Finally, it discusses representation and valuation of stochastic processes. 

2.1 Related work 

When considering the past decade, there had been several domain specific languages 

were created for different subdomains related to financial contracts. RISLA is an example of 

such attempt [11]. This language is used to define interest rate products offered by a bank. As 

the first attempt to represent financial contracts, Lee [12] has attempted to develop a formal 

language for electronic contracts via having a common logic model. According to him, a product 

can be described by representing its cash flows. But after that, almost all those researches were 

based on Peyton Jones et al. [13] contract description language.  

We can divide those researches into two main categories. One category is aiming to 

improve the language further and apply to other domains. Mediratta [14] and Christiansen et 

al. [15] applied the Peyton Jones’ contract descriptive language for specific domains. Figure 4 

summarizes their contributions. Another category is that to use this language for contract 

valuation. Ahnfelt [16] introduced a language called SPL which can be used to valuate stochastic 

processes. Figure 3 illustrates how researches have been evolved in this domain.  
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Figure 3: Background Summary 

 

 

Figure 4: Related Work 
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Lexifi [10] had done many researches on this domain and most of their commercial 

products are based on them. They have done research for pricing and operational management 

based on the Peyton Jones’ contract descriptive language. LexiFi has built a software 

stack based on this language, implementing all the generic operations listed in Figure 5. 

They have done those research for many years with the involvement of leading researchers 

in computer science. 

 

 

Figure 5: Contract Management 

Peyton Jones et al. [13] republished their language with some slight changes. They 

removed truncate combinator and added two new combinators called cond and when. One of 

the main reasons to do this is to make the language more flexible. 

2.2 Contract Management  

Contract management is as important as Contract valuation. One important purpose of 

building Peyton Jones Contract Descriptive Language is to manage contracts [13]. Lexifi has 

done some research regarding contract management using Peyton Jones’ contract description 

language [17]. They have identified several key features in this language. 

• Contract description defines the rights and obligations of the parties both precisely and 

exhaustively, and independently of any valuation methodology. 

• Supports any type or combination of the underlying asset(s). 
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• Has a well-defined and unambiguous semantics, which makes it possible to reason 

about contract descriptions and define operations in a generic way. 

• Contract description is a "portable" piece data which can be exchanged between 

computer systems and across stakeholders. 

Because of these features, Peyton Jones’ contract description language is somewhat 

suitable for contract management. 

 But it was not sufficient enough to properly manage all types of contracts. So there are 

many researches that have been done to Improve Peyton Jones’ Contract Descriptive 

Language for contract management other than valuation. 

2.2.1 Compositional Specification of Commercial Contracts 

Andersen, J. et al. [1] extends Peyton Jones’ contract description language for specifying 

financial contracts to the exchange of money, goods, and services among multiple parties. In 

their paper, they have discussed how this extended language can be used for contract 

management. 

2.3 Evaluating Value Processes 

Peyton Jones et al. [7] has implemented a value process to generate the value of a 

contract at a given time. A value process is defined as a partial function of time to a random 

variable. 

 

 They have implemented this value process based on the lattice valuation method. They 

have introduced a set of compositional evaluation semantics for evaluating composite contract 

for valuation. Those evaluation semantics first converts the contract into a value process. Those 

semantics are shown in figure 6 and figure 7.  
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Figure 6: Evaluation Semantics for Contracts 

 

 

Figure 7: Evaluation Semantics for Observables 

 

After converting into a value process, a financial valuation model is used to convert the value 

process into concrete implementation. Various mathematical models are used to create such 

models and lattice approach is the easiest among them. This model represents the value of a 

contract or an observable using a lattice data structure. Interest rate can also be represented 

by a lattice data structure. Figure 8 contains such a representation of interest rate over time. 

Each column of this tree represents a discrete time step.  



15 

 

 

Figure 8: A Short-Term Interest Rate Evaluation 

 

As mentioned, value processes are also modeled as a lattice. Consider the following example 

contract.  

 

(get (scaleK 10 (truncate t (one GBP))) 

 

Figure 9 shows the value process of this contract. This value process is generated using the 

lattice valuation model. 

 

 

Figure 9: A Valuation Lattice 
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2.3.1 Valuating Stochastic Processes 

Distributions that change over time are called stochastic processes. Ahnfelt [18] has 

introduced a language for specifying stochastic processes, called SPL. This SPL can be used to 

calculate the price of a range of financial contracts. They have tested their models for different 

types of options. And they have done a Monte Carlo simulation as well. But one drawback of 

this SPL is that it can’t be used to valuate American Options. This is due to the semantics of SPL, 

which assumes that future events can be known in the present. Figure 10 represents a 

summary of contract valuation for contract descriptive language.  

 

 

Figure 10: Contract Valuation 

2.3.2 Probabilistic Functional Programming Library (PFPL) for Haskell 

FPPL is a library for probabilistic functional programming [19]. They used this language 

for specifying stochastic processes. In this section, I will explain some functionalities of this 

language. 

The basic idea of FPPL is to represent a distribution as a list of all possible outcomes (the 

sample space) coupled with their probability, which is a real number between 0 (impossible) 

and 1 (certain). 

 

 data Dist a = D [(a, Probability)] 
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D data constructor won't create distributions directly. Separate functions were given to 

create each distribution. To create discrete uniform distribution uniform construct can be used. 

 

data Coin = Heads | Tails 

flip :: Dist Coin 

flip = uniform [Heads, Tails] Printing 

 

Such distributions can be combined together using the joinWith combinator. And the 

operator >>= can be used when events in a distribution are dependent on each other. So every 

joinWith and >>= create the Cartesian product of the distributions. 

 

 flip2 = joinWith both flip flip 

2.3.3 Representing Stochastic Processes 

FPPL model stochastic processes as a list of distributions, [Dist a]. SPL used FPPL with 

some modifications to represent contracts written Peyton Jones’ Contract Descriptive Language 

as stochastic processes. And Ahnfelt [18] provide an implementation of SPL that performs 

Monte Carlo simulation using GPGPU.  

2.3.4 Monte Carlo Simulation for Valuation 

Phelim et al. [4] elaborate, uses of Monte Carlo simulation in security pricing. According to this 

paper, Contracts and observables are often models as continuous-time stochastic processes. 

And the price of a contract can be expressed as the expected value of its discounted payouts. 

So for pricing those contracts, Monte Carlo simulation can be used. According to Phelim et al. 

[4], Monte Carlo simulation for security pricing can be done using following steps, 

• Simulate sample paths of the underlying state variables (e.g., contract prices and 

interest rates) over the relevant time horizon. Stimulate these according to the risk-

neutral measure. 

• Evaluate the discounted cash flows of a security on each sample path, as determined by 

the structure of the security in question. 

• Average the discounted cash flows over sample paths.  
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2.3.5 American options and Monte Carlo simulation 

Valuation of American options using Monte Carlo simulation presents some difficulties 

[20][21]. Monte Carlo methods are required for options that depend on multiple underlying 

securities or that involve path dependent features. Since the determination of the optimal 

exercise time depends on an average over future events, Monte Carlo simulation for an 

American option has a “Monte Carlo on Monte Carlo” feature that makes it computationally 

complex. 
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Chapter 3 -  Design 

This chapter consists of language models we have proposed and justifications for each 

design component. The first half of this chapter proposes a design of a model to generate a 

calendar for Peyton Jones’ contract descriptive language with justifications. And in the second 

part, we introduce to a language model which can use to simulate the contract value of a 

contract written in Peyton Jones’ contract descriptive language with Monte Carlo method. All 

the design decisions are justified. 

3.1 Calendar Model 

As stated in section 1.2, the first research question is to check the ability to develop a 

model to generate the calendar for a contract written in Peyton Jones’ contract descriptive 

language.  

According to the research methodology, we have developed several calendar models 

and tested them with examples. Among those models, we have chosen a final model that aligns 

with our calendar definitions.  

3.1.1 Calendar Definition 

Calendar for a contract can be defined in many ways. According to Jean-Marc Eber [10] 

calendar is defined as a mechanism of detecting all meaningful events that will or may happen 

in the future. And it is an action schedule of a contract that consists of rights and obligations of 

that contract. For our calendar models, we have the same definition but they have slightly 

different functionalities. Our alternative calendar model will yield all possible cash flows 

without considering any past or future decisions. But in the final calendar model, it will yield 

cash flows only relate to the current decision status. 
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3.1.2 New Data Types 

Related to this model we have introduced two new data types. Those are Event and 

Calendar. Event is a single day on our calendar with a set of possible transactions. Event is 

implemented as a list of possible cash inflows and cash outflows. 

 

Calendar is an observable of Events. In other words, Calendar is a function of time to a 

calculated event. Figure 11 represents the concept behind an event and a calendar. 

 

 

Figure 11: An Event in the Calendar 

3.1.3 Evaluation Semantics 

To convert Contract into a Calendar set of evaluation semantics were introduced. Figure 

13 represents evaluation semantics for the final calendar model. For this model, we have 

considered time as a relative observable for each calendar. The time starts with 0 and has 

discrete values which are considered as months. 

Let's map each line of evaluation semantics into our calendar definition. The β function 

maps contracts into its relevant calendar. First consider the equation which maps Zero contract 

into zeroCal. Zero contract has no rights or obligations. So it should return an empty calendar. 

According to the definition, zeroCal represents an empty calendar. One k represents a contract 
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with a cash inflow (right) of one at the acquisition date of the contract. It will get maps with a 

calendar called oneCal k which represents a cash inflow of one at time 0. Give c makes all rights 

of contract c into obligations. To represent this in the calendar we used giveCal combinator. In 

our model minus values represent obligations and plus values represent rights. For And 

combinator and Or combinator for contracts, they represent combinations contracts. To 

combine calendars of two contracts we introduced a new combinator called zipCal. For 

contracts combined with Cond combinator, their relative calendars should come to an absolute 

time scale. To do this we have introduced a combinator called shift. 

 

 

Figure 12: Contract evaluation semantics (Final Model) 

 

When gradually building the final contract evaluation model, we came across some 

alternative calendar models which slightly differ from our calendar definition. One such model 

is given in Figure 13.  
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Figure 13: Contract evaluation semantics (Alternative Model) 

3.1.4 Combinators for Calendar 

We Introduced 6 new combinators for calendars. Bellow section presents a detailed description 

of each combinators.  

 

zeroCal oneCal giveCal 

scaleCal zipCal shift 

 

 

These two are the most primitive types of calendars in this model. As described in the 

contract descriptive language, these combinators are the main building blocks of complex 

Calendars.  

zeroCal is a Calendar, which returns zero for all the locations in the timeline. This 

represents an empty calendar whereas oneCal represents a Calander which returns an event 

with value 1 at the time 0 and an event with value 0 at every other time. Figure 14 illustrates a 

representation of zeroCal and oneCal on how the value changes with time.  
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Figure 14: zeroCal and oneCal Combinators 

 

 

giveCal combinator returns the negation of a Calender which represent a cash outflow. Figure 

15 represents how calendar events are changed when giveCal combinator is applied.  

 

 

Figure 15: giveCal Combinator 

 

 

scaleCal will scale each value of the Calender with the corresponding value of the observable. 

Figure 16  
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Figure 16: scaleCal Combinator 

 

 

zipCal combinator is used to merge two calendars. And it combines their events and returns 

one composite event for a given time. 

 

 

 

Figure 17: zipCal Combinator 
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This combinator is more useful when combining two calendars in different time zones. shift 

function will shift all its event positions from a given Time value. Figure 18 represents  

 

 

 

Figure 18: shift Combinator 

 

3.2 Monte Carlo simulation for option pricing  

3.2.1 Representing Stochastic Processes  

We have created a simple model to represent stochastic processes for Monte Carlo 

simulation. This model uses a new data type to hold the normal distribution representation. 

This data type consists of the mean and the standard deviation of a normal distribution.  

 

 data Dist = Dist mean std 

 

And value process is represented as an observable of distributions. Which means that for each 

discrete time, it returns a distribution of values. This representation of stochastic processes and 

distributions can get changed in different implementations and different contexts. 
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3.2.2 Interest Rate Model 

We have modeled Interest rate as an observable of normal distributions. For each time step, it 

returns a distribution that represents how the interest rate can get varied. To build the interest 

rate model following information needs to be given, 

• Interest Rate on the considering date.  

• Maximum percentage of the interest rate that can go up or down.  

• Number of paths considering for to generate distributions.  

 

3.2.3. Simulating Contract Value 

For Monte Carlo Simulation random paths for the contract values, need be generated. 

Then the simulator returns a value distribution for a given discrete time point. In Peyton Jones’ 

contract descriptive language, they have used a function called disc to get the discounted value 

for a particular contract. So this proposed simulator can be directly plugged into this disc 

function.  

One of the major components in Monte Carlo simulation is the random path generator. 

In this research, we have designed a simple random path generator which is implemented using 

language Haskell. Functional Programming languages such as Haskell makes it harder to create 

random number generators because functions in pure functional languages are immutable in 

nature. A thorough discussion about the implementation of this random number generator will 

be done in chapter 4. Random path generator creates random paths for the interest rate.  

This random path generator first creates random walks for the interest rate. Figure 19 

represents such paths that generate by the simulator. After generating paths for the interest 

rate, those paths are used to discount the value and generate value paths. This process is called 

contract value simulation. In our design, paths are infinitely long. And ‘number of paths’ is a 

parameter used in the Interest rate model.  
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Figure 19: Interest Rate Paths Simulation 

 

Parameters are passed through a model. interestWalk function create an array of 

random walks for a given starting interest rate value.  

 

 interestWalk :: Model -> Float -> Time  -> [[Float]] 

 

 This Model parameter can be found in the evaluation semantics proposed by Peyton 

Jones’ language. The same Model parameter is used for this implementation as well. In the 

proposed evaluation semantics, function definition has the same set of parameters.  

3.2.4 Contract Evaluation Semantics 

Importance of this proposed model is that it uses the same evaluation semantics for 

contracts, proposed by the Peyton Jones’ contract descriptive language. Instead of returning a 

value process this model returns an Observable of value distributions. Figure 6 contains the 

evaluation semantics for contracts used in contract descriptive language. Following function 

definition, shows the newly proposed evaluation semantics. The only difference is the return 

type. This is because proposed semantics supports valuating stochastic processes.   
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 evalTermsAtP :: Model -> Time -> Terms -> Obs Dist 

  

Proposed evaluation semantics use the same set of combinators as the original model. 

But instead of returning a simplified contract, it returns a stochastic process. To build up 

stochastic processes we have introduced a new set of combinators. The only difference 

between these set of combinators and initial combinators are that instead of combining 

contracts these combinators combine stochastic processes.  

3.2.5 Combinators for Stochastic Processes   

To combine stochastic processes we have modified existing set of combinators as 

follows, 

 

3.2.5.1 zeroP 

 

zeroP is a stochastic process which needs to be equal to zero combinator. zero 

combinator implies no obligation or zero value at any given time. When converting this into a 

stochastic process, because it is a known variance become zero and the mean is also equal to 

zero. 

 

 zeroP :: Obs Dist 

 

3.2.5.2 oneP  

 

This combinator is the equivalent stochastic process for the one combinator. one 

combinator is a contract with one value at the acquisition date of the contract.  This value has 

no ambiguity. Because of this, the variance of oneP is zero and the mean is equal to the 

contract value. 

 

 oneP :: Amount -> Obs Dist 

 

3.2.5.3 giveP 
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This is the equivalent stochastic process combinator for give. give combinator implies a 

cash outflow. giveP represents a cash outflow by negating the mean value.  

 

3.2.5.d scaleP 

 

 scaleP combinator act as the scale combinator in Peyton Jones’ language. This 

combinator scales the value process by a given scaling factor.  

 

 scaleP ::Obs Decimal -> Obs Dist -> Obs Dist 

 

3.2.5.e andP 

 

 andP combinator applies and operator for two stochastic processes. When combining 

two processes together, the new process equals to an observable with a mean of the addition 

of two distribution means and variance is the addition of two variances.  

 

 andP :: Obs Dist -> Obs Dist -> Obs Dist 

 

3.2.5.f orP 

 

 orP combinator acts as the or combinator in Peyton Jones’ contract descriptive 

Language. When parsing for valuation, orP combinator selects the stochastic process which as 

the highest mean value. This can be changed according to the implementation. The model says 

that, choose the most profitable contract according to their distribution values.  

3.2.4 Monte Carlo simulation  

Simulation is needed when discounting the value of a contract. In Peyton Jones’ 

contract descriptive language, disc function acts as a discounting function for contracts. In the 

proposed model, this disc function is modified so that it does a Monte Carlo simulation for 

value and return the distribution corresponding to a particular time step. In evaluation 
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semantics, when combinator converted into a value process by using this disc function. In the 

proposed model, when is parsed into an observable of distributions instead of a value process.   
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Chapter 4 -  Implementation 

This chapter illustrates an implementation of the Peyton Jones’ contract descriptive 

language and models proposed in Chapter 4. All the implementations are done using the 

language Haskell. This chapter also provides an introduction to Haskell and its lazy evaluation 

principles. Codes are provided to illustrate important implementation decisions. 

 

4.1 Why Haskell? 

Peyton Jones et al. [1] has used Haskell when implementing the contract descriptive language. 

This research also used Haskell as the primary language for implementations. Following are the 

main reasons to use Haskell, 

• Haskell is a declarative language 

• It supports lazy evaluation 

• Built-in Characteristics 

Haskell has many important features that can be used when building a domain specific 

language [8]. For an example, in the implementation, lazy evaluations in Haskell made recursive 

computations efficient.  

4.1.1 Lazy evaluation 

We used lazy evaluation and its behavior in our implementations. It is used to implement 

infinite lists and large recursions. Let’s understand the behavior of lazy evaluation. Consider the 

following example, 

 

magic :: Int -> Int -> [Int] 

magic 0 _ = [] 

magic m n = m : (magic n (m+n)) 
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We can see that (magic 1 1) returns the Fibonacci number series as an infinite list. This is 

possible because of the lazy evaluation. This expression won’t evaluate unless otherwise a 

value is requested.  

If we asked for the value at index 2, ((magic 1 1) !! 2) then it will evaluate the list until 2nd 

index and returns the value at index 2. 

4.2 Peyton Jones’ Contract Descriptive Language 

There are many implementations of Peyton Jones’ Contract Descriptive Language in many 

different languages. We have implemented the basic functionalities of this language using a 

Haskell implementation. This implementation consists of following components, 

• Contract definition and implementation 

• Time, Period, Random value and Observable implementation 

• Currencies and amounts implementation 

• Contracts combinators  

• Observables combinators 

• Contract types 

• Contract evaluation semantics 

• Contract valuation model  

4.2.1 Contract 

For our research, we have used an implementation of contracts which have a name parameter. 

Because of this managing, the contract becomes much easier. In this implementation contracts 

are implemented as follows, 

 

data Contract = Contract Name Terms deriving Show 

 

name :: Contract -> Name 

name (Contract n t) = n 

 

terms :: Contract -> Terms 

terms (Contract n t) = t 

 



33 

 

type Name = String 

data Terms = 

    Zero 

    | One  Amount 

    | Give Terms 

    | And  Terms Terms 

    | Or   Terms Terms 

    | Cond    (Obs Bool)   Terms Terms 

    | Scale   (Obs Int)    Terms 

    | When    (Obs Bool)   Terms 

    deriving Show 

 

Contract is defined as a data type and it has two main components. Which are Name and 

Terms. Name is a string that use to identify a particular contract. And Terms are defined 

recursively.  

4.2.2 Time  

data PeriodName = Month | Months 

type Time   = Integer 

 

For this implementation, we measured time as discrete months. And it can be changed 

according to the requirement. Time is represented by an integer and it identifies a particular 

month. 

4.2.3 Currencies and amounts 

data Currency = AUD | NZD | USD deriving (Eq, Show) 

data Amount = Amt Decimal Currency 

 

In this implementation, there are three currency types. They are Australian Dollars, New 

Zeeland Dollars, and American Dollars. An Amount is represented by a decimal value and a 

currency. As an example, 40 US Dollar is represented as 40 USD. 
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4.2.4 Contract combinators 

In this implementation, there are 8 combinators for contracts. Contract is defined using these 8 

combinators. zero and one are the most primitive type of contracts according to this language. 

They are implemented as follows. 

 

zero :: Terms 

one :: Amount -> Terms 

scale :: Obs Int -> Terms -> Terms 

give :: Terms -> Terms 

and :: Terms -> Terms -> Terms 

or :: Terms -> Terms -> Terms 

cond :: Obs Bool -> Terms -> Terms -> Terms 

when :: Obs Bool -> Terms -> Terms 

4.2.5 Observables and combinators for observables 

newtype Obs a = Obs (Time -> a) 

 

As explained in the language, observable is implemented as a function of time to a random 

variable. And for those observables set of combinators are defined. Those are, 

konst :: a -> Obs a 

konst k = Obs (\t -> k) 

 

at :: Time -> Obs Bool 

at t = Obs (\time -> (time == t)) 

 

lift2 :: (a -> b -> c) -> Obs a -> Obs b -> Obs c 

lift2 f (Obs o1) (Obs o2) = Obs (\t -> f (o1 t) (o2 t)) 

 

date :: Obs Time 

date = Obs (\t -> t::Time) 

 

konst combinator creates an observable which returns a constant value at each time value. And 

at combinator creates a Boolean observable that returns that get true at a given time period. 
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4.3 Calendar evaluation model implementation  

Calendar evaluation model is implemented based on the implementation of contract 

descriptive language specified in chapter 4.2. Two new data types are implemented as follows, 

type Event = [Int] 

type Calender = Obs Event 

 

In this implementation, Event is defined as an array of integers. One integer represents a cash 

inflow or cash outflow. This can be changed according to the requirement. Calendar is an 

observable of Events. We have used the same implementation for Observables as it is in the 

Peyton Jones’ language. 

4.3.1 Combinators for Calendar 

In the implementation, we have implemented 7 new combinators for calenders. As mentioned 

in chapter 4, we have 6 main combinators which are zeroCal, oneCal, scaleCal, zipCal, shift and 

giveCal. When comes to implementation level, zipCal need to be implemented separately for 

and and or combinators.  

 

zeroCal :: Calender 

zeroCal = konst [0] 

 

oneCal :: Amount -> Calender 

oneCal k = konst [1] 

 

scaleCal :: Obs Int -> Calender -> Calender 

scaleCal o cal = lift2 mult o cal 

 

zipCalOr :: Calender -> Calender -> Calender 

zipCalOr cal1 cal2 = lift2 merge cal1 cal2 

 

zipCalAnd :: Calender -> Calender -> Calender 

zipCalAnd cal1 cal2 = lift2 add cal1 cal2 

 

shift :: Calender -> Obs Bool -> Calender 

shift cal (Obs o) = Obs (\time -> (if (o time) then (getValue cal time) else (getValue 

zeroCal time))) 

 

giveCal :: Calender -> Calender 

giveCal cal = lift2 mult (konst (-1)) cal 
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When implementing those combinators, we have introduced following supporting 

functions.  

 

4.3.1.1 revobs 

 

revobs returns the complement of a Boolean observable. It takes a Boolean observable 

and for each time step it returns the opposite of the Boolean value.   

revobs :: Obs Bool -> Obs Bool 

revobs (Obs o) = Obs (\time -> (if (o time) then False else True)) 

 

4.3.1.2 merge and rmdups 

 

merge function uses to merge two events together and return a single event. When 

merging duplicate values are removed. the rmdups function is used to remove duplicate values 

from the list. 

 

rmdups :: (Ord a) => [a] -> [a] 

rmdups = map head . L.group . L.sort 

 

merge :: [Int] -> [Int] -> [Int] 

merge xs     []     = rmdups (0:xs) 

merge []     ys     = rmdups (0:ys) 

merge (x:xs) (y:ys) = rmdups (x : y : merge xs ys) 

 

4.3.1.3 add  

 

add is used to combine two events and return a new event with transactions of both 

events and all combinations of transactions between those two events. As the merge function, 

duplicates are removed after combination. 

 

add :: [Int] -> [Int] -> [Int] 

add xs [] = rmdups (0:xs) 

add [] ys = rmdups (0:ys) 
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add (x:xs) (y:ys) = rmdups ((x+y) : (merge (add (x:xs) ys)  (add xs (y:ys)))) 

 

 

 

4.3.1.4 mult  

 

This function is used to scale an event from a given value. And this function is used 

when implementing scaleCal and giveCal combinators.  

 

mult :: Int -> [Int]-> [Int] 

mult x ys = map (x *) ys 

4.3.2 Contract evaluation semantics for Calendar 

Proposed evaluation semantics parses a given contract and returns its relevant calendar. This 

evaluation semantics takes Time and Terms as parameters and returns a Calendar. Time is 

given because the returned calendar considers the given time as the starting point of the 

calendar.  

  

evalCalenderAt :: Time -> Terms -> Calender 

evalCalenderAt t = calender 

    where 

        calender Zero                   = zeroCal 

        calender (One k)                = oneCal k 

        calender (Give c)               = giveCal (calender c) 

        calender (o `Scale` c)          = scaleCal o (calender c) 

        calender (c1 `And` c2)          = zipCalAnd (calender c1) (calender c2) 

        calender (c1 `Or` c2)           = zipCalOr (calender c1) (calender c2) 

        calender (Cond o c1 c2)         = zipCalAnd (shift (calender c1) o)  

     (shift (calender c2) (revobs o)) 

        calender (When o c)             = shift (calender c) o 
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4.4 Valuate Stochastic Processes 

We represented the stochastic process as an observable of distributions. Following Haskell code 

represents the implementation of Dist data type and other supporting functionalities. 

data Dist = Dist Decimal Decimal 

 

mean :: Dist -> Decimal 

mean (Dist m sd) = m 

 

std :: Dist -> Decimal 

std (Dist m sd) = sd 

4.4.1 Random Path Generation 

One of the main challenges we faced was to create a random path generator. Problem with 

implementing a random path generator is that pure functional languages such as Haskell are 

inherently immutable. To overcome this problem we implemented random path generator as 

an inner function. interestWalk function create a single path for interest rate. 

    

interestWalk :: Float -> [Float] -> [Float] 

interestWalk = walk 

    where walk currentIr (x:xs) = (currentIr * x) : (walk (currentIr * x) xs) 

4.4.2 Implementing Interest Rate Paths 

To generate several interest rate paths at ones we implemented the interestWalkAll function. 

interestWalk function is used to generate individual paths and they are stored in a 

multidimensional array. 

 

interestWalkAll :: Float -> Int -> [[Float]] 

interestWalkAll a = walkMore 

    where 

    walkMore 0 = [] 

    walkMore n = (walkMore (n-1)) ++ [(interestWalk a (map (/ 100)  

      (map unsafePerformIO x)))] 

     where x = (getStdRandom (randomR (90, 110))) : x 
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Once this function called, generated values will remain same so the Interest rate 

process remains fixed. In this implementation, random numbers are taken from an infinite 

array of random numbers and the random walk is also an infinite array. Because of the lazy 

evaluation, these arrays won’t evaluate until a particular value is requested. And generated 

values will remain fixed so that it won’t recalculate them again.  

4.4.3 Discounting Function  

This function is used to discount a particular value. This function takes simulated 

interest rate paths as a parameter. discAll function returns a distribution of the present value of 

a future cash flow. 

 

disc :: [[Float]] -> Float -> Int -> Int -> Float 

disc intr p k = discin 

    where 

    discin 0 = p 

    discin n = (discin (n-1))*(1 + (intr!!k!!(n-1))) 

 

discAll :: [[Float]] -> Float -> Int -> Dist 

discAll intr p n = Dist (discMean intr p n) (discVar intr p n) 

 

4.4.4 Evaluation Semantics 

Evaluation semantics for contract evaluation is the most important part of this implementation. 

This evaluation semantics converts a given contract in to a stochastic value process. evalP 

function recursively parse a given contract using bottom up evaluation.  

 

evalTermsAtP :: Model -> Time -> Terms -> Obs Dist 

evalTermsAtP m t = evalP 

    where 

        evalP Zero                      = zeroP 

        evalP (One amt)              = convertToP m t (mainCurrency m) $ One amt 

        evalP (Give c)                 = scaleP (Obs (\t -> (-1))) (evalP c) 

        evalP (Zero `And` Zero)            = zeroP 

        evalP (Zero `And` (One amt))    = oneP amt 

        evalP ((One amt) `And` Zero)    = oneP amt 
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        evalP (c1 `And` c2)                      = (evalP c1) `andP` (evalP c2) 

        evalP (c1 `Or`  c2)          = maxTP (getValue ((exchangeRate m) USD  

     USD) t) t (evalP c1) (evalP c2) 

        evalP (Cond (Obs o) c1 c2)         = if (o t) then (evalP c1) else (evalP c2) 

        evalP (When (Obs o) c)               = if (o t) then (discAllP m t (evalP c))  

        else zeroP 

        evalP (Scale (Obs s) (One (Amt amt cur))) = oneP $ Amt  

      (amt *. (realToFrac $ s t)) cur 

 

4.4.5 Combinators for Stochastic Processes 

To support stochastic process building, we implemented a set of combinators for 

stochastic processes. zeroP and oneP are the unit stochastic processes that use to evaluate zero 

contract and one contract. And other combinators are implemented to support the conversion 

of contracts to stochastic processes. Following is an implementation of those set of 

combinators. 

 

zeroP :: Obs Dist 

zeroP = (konst (Dist 0 0)) 

 

oneP :: Amount -> Obs Dist 

oneP amt = konst (Dist (amountToDecimal amt) 0) 

 

scaleP ::Obs Decimal -> Obs Dist -> Obs Dist 

scaleP (Obs o) (Obs p) = Obs (\t -> (Dist ((mean (p t)) * (o t)) ((std (p t)) *  

        (o t)))) 

 

andP :: Obs Dist -> Obs Dist -> Obs Dist 

andP (Obs p1) (Obs p2) = Obs (\t -> (Dist ((mean (p1 t)) + (mean (p2 t)))  

     ((std (p1 t)) + (std (p2 t))) )) 

 

 All these combinators return a stochastic process which is implemented as an 

observable of distribution.  
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Chapter 5 -  Evaluation and Conclusion 

In this chapter, example contract evaluations are done for models introduced in Chapter 

4 as proof of concept. This chapter gives a conclusion for research questions and research 

objectives based on findings. Next, it describes some limitations in proposed models. Finally, this 

chapter concludes by introducing toward some future research and experiments possible. 

5.1 Example Contract calendar Evaluation 

Let's consider some example contracts from contract descriptive language and try to 

evaluate using proposed evaluation semantics. First, consider the following contract which is a 

simple zero coupon bond. It represents a cash outflow of 100 USD at 4th month. 

Representation for this contract using the contract descriptive language is as follows, 

              

 C1 = When (at $ 4 Months) (Scale (konst 100) $ Give $ One USD) 

 

Figure 20 elaborate the conversion of this contract into calendar representation using calendar 

evaluation semantics. At the end of the parsing, evaluation semantics returns the following 

representation of a calendar, 

 

shift (at 4) scaleCal (Konst 100) (giveCal calOne) 
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Figure 20: Contract Parsing for Calendar 

This representation consists of Calender combinators and observables. Proposed evaluation 

semantics will evaluate this expression recursively. From the bottom of the recursive tree, it 

first evaluates One USD. And the result would be a Calender which returns an event with value 

1 at time 0 and an event with value 0 at every other time. then it will evaluate Give $ One USD 

Contract. It will return the negation of all events in the previous calendar. And then all values in 

all events will be scaled by 100. Finally, will get shifted to start from the third month of the 

relative timeline. 

The next example is an American option. In this example, contract holder has the right 

to receive 10 USD within 2nd and the 4th months. 

 

 C2 = american (1 Month, 3 Months) (Scale (konst 10) $ One USD) 

 

This contract will translate into simple combinators as follows, 

 

 When (Obs Bool) (Scale (konst 10) $ One USD) 

 

After that (Scale (konst 10) $ One USD) will evaluate as it in the previous example. And when 

combinator will check whether the observable is true or not. If it is true then shifted calendar of 

(Scale (konst 10) $ One USD) will be returned. Otherwise, zeroCal will be returned. So the 

evaluated calendar will be, 

  

The next example is a combination of previous two contracts. 
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 C3 = And c2 c1 

 C3 = And (american (1 Month, 3 Months) (Scale (konst 10) $ One USD)) 

          (when (at $ 3 Months) (Scale (konst 100) $ Give $ One USD)) 

 

For this example, and combinator will combine calendars of both C1 and C2 with calZip 

combinator. And each result of those two calenders will get zip into one event. 

 

5.1.1 Calendar Generation Model Evaluation 

We gave this model to industry experts for the evaluation. According to their opinion, 

this model consists of important features that may support to manage contracts in the industry. 

They mainly recommended this model for contracts in actuarial services because contracts in 

that domain have long lifecycles.  

5.2 Example Contract Monte Carlo Simulation  

Consider the C1 contract introduced in the previous section. 

 

 C1 = When (at $ 4 Months) (Scale (konst 100) $ Give $ One USD) 

 

Let’s convert this contract into stochastic a process using our Evaluation semantics. First 

One USD will be converted into a distribution with mean 1 and standard deviation 0.  This is 

because the value is known. Then parsing the scale combinator scales the distribution with the 

given observable. After scaling it returns a distribution with mean 100 and standard deviation 

equal to 0.   

 To valuate, we need to have an interest rate model and future interest rate simulation. 

In our implementation, interestWalkAll function can be used.  

  

 m = interestWalkAll 0.01 50 

 

M consists of 50 random paths for the interest rate assuming the current interest rate of 0.01. 

We can use this interest rate model to discount the previous contract value.  
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 v = discAll m 100 4 

 

discAll function returns the current value of a future cash flow. In this scenario, it returns the 

present value of C1. This value is returned as a distribution of values. Output for this given 

example is a distribution with mean equals to 101.12 and the standard deviation is equals to 

0.22.  

 

Figure 21: Contract Parsing for a Stochastic Process. 

Figure 21 represents how parsing is done for a contract using the evaluation semantics. 

Monte Carlo simulation is done when parsing the when combinator. 
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5.3 Conclusion  

Peyton Jones’ Contract Descriptive Language is widely used in the financial sector. Our 

aim was to evaluate different value processes that can be applied to Peyton Jones’ Contract 

Descriptive Language. First, we looked into the possibility of constructing a model to generate a 

calendar for a given contract represented in this language. The motivation for exploring this 

value process came from a keynote speech delivered by Jean-Marc Eber at the Domain-Specific 

Languages for Financial Systems (DSLFIN) 2013 workshop [10]. 

We gradually built up several models until it aligned with our calendar definitions. A set 

of evaluation semantics, that can be used to translate a given contract into its relevant calendar 

was introduced. To represent and build calendars we came up with a set of new combinators. 

We validated each of these combinators by aligning them with our calendar definitions. 

According to the industry experts, this model is suitable to generate a calendar for a contract, 

and they recommended this model mainly for actuarial services. Our final conclusion of the first 

part of the research is that it is possible to build a model to generate a calendar for a contract 

written in Peyton Jones’ Contract Descriptive Language. And such model can be implemented 

and tested. And we concluded that such model is highly beneficial and have a high value in the 

industry.  

As the second objective of this research, we created a model to simulate Monte Carlo 

valuation for a contract written in Peyton Jones’ Contract Descriptive Language. To achieve this 

objective, we had to create a representation for stochastic processes. We represented a 

stochastic value process as an observable of normal distributions. In the process, we modified a 

set of combinators so that, they would support to combine stochastic processes.  We designed 

an interest rate model and introduced a function to generate Monte Carlo simulation for future 

interest rate values. We modified the discounting function in Peyton Jones’ Language, so that it 

uses the simulated interest rate paths. Without doing major changes to the existing model 

proposed by Peyton Jones et al. [13], we were able to create a model to do Monte Carlo 

simulation for a contract written in Peyton Jones’ Language.  

As the conclusion, this implies the power of Peyton Jones’ Contract Descriptive 

Language in valuating contracts. Our findings further prove that Monte Carlo simulation can be 

used for valuation, instead of using lattice valuation method, without doing major changes to 

the existing language model. 
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5.4 Limitations 

Proposed models only rely on the information provided by the contract representation 

of Peyton Jones’ contract descriptive language. Because of this calendar model only yield 

timeline of possible cash flows for a given contract.  

In the evaluation semantics which was introduced for stochastic processes will not work 

on American options. This is because of the uncertainty of their acquisition date. Industry 

experts are also recommended not follow the path of valuating American options with limited 

time constrains.  

5.5 Future Work 

In this research, we introduced several models for computing processing activities in 

Peyton Jones’ contract descriptive language. Other than the tested activities there are many 

processing activities that can be evaluated for this language. Risk calculation is one such 

activity. Generating a model to calculate the risk would be highly beneficial.  

Calendar model can be further improved by modifying the contract definition. Other 

than having cash flows, the contract can have details like acquisition date, quantity, long term 

or short term etc. These kinds of representations would benefit when it comes to the contract 

management. And in the calendar, these details can be used to represent detailed event plan 

rather than showing cash flows. 

The stochastic process valuation can be done using a more complex Monte Carlo 

simulation method. In our model, we used a simple method that outlines the basic 

functionalities of Monte Carlo simulation. The proposed model is suitable for valuating 

American options by doing slight changes to the model. But in this research, we haven’t tested 

for American options. It is an important future work to be done.  
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Appendix A 

Code: Language 

module DSL where 

------------------------------------------------------------------------------ 

import Data.Decimal 

import qualified Data.List as L 

------------------------------------------------------------------------------ 

import System.IO.Unsafe  -- be careful! 

import System.Random 

 

        -- Contract 

 

------------------------------------------------------------------------------ 

 

data Contract = Contract Name Terms deriving Show 

 

name :: Contract -> Name 

name (Contract n t) = n 

 

terms :: Contract -> Terms 

terms (Contract n t) = t 

 

type Name = String 

data Terms = 

    Zero 

    | One  Amount 

    | Give Terms 

    | And  Terms Terms 

    | Or   Terms Terms 

    | Cond    (Obs Bool)   Terms Terms 

    | Scale   (Obs Int)    Terms 

    | When    (Obs Bool)   Terms 

    deriving Show 

------------------------------------------------------------------------------ 

 

 

        -- Time, Period, Random value, Observable 

 

------------------------------------------------------------------------------ 

data PeriodName = Month | Months 

 

type Time   = Integer 

type Period = Integer 

 

instance Num (PeriodName -> Time) where 

    fromInteger t Month = t::Time 

    fromInteger t Months = t 

 

newtype Obs a = Obs (Time -> a) 

 

getValue :: Obs a -> Time -> a 

getValue (Obs x) time = x time 

 

instance Show a => Show (Obs a) where 

    show (Obs obs) = "(Obs " ++ show (obs 0) ++ ")" 
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konst :: a -> Obs a 

konst k = Obs (\t -> k) 

 

at :: Time -> Obs Bool 

at t = Obs (\time -> (time == t)) 

 

lift2 :: (a -> b -> c) -> Obs a -> Obs b -> Obs c 

lift2 f (Obs o1) (Obs o2) = Obs (\t -> f (o1 t) (o2 t)) 

 

date :: Obs Time 

date = Obs (\t -> t::Time) 

 

 

 

-- Compare observables 

(%<), (%<=), (%==), (%>=), (%>) :: Ord a => Obs a -> Obs a -> Obs Bool 

(%<)  = lift2 (<) 

(%>)  = lift2 (>) 

(%==) = lift2 (==) 

(%>=) = lift2 (>=) 

(%<=) = lift2 (<=) 

 

type Term            = [Time] 

type PaymentSchedule = [Amount] 

------------------------------------------------------------------------------ 

 

 

        -- Currencies and amounts 

 

------------------------------------------------------------------------------ 

data Currency = AUD | NZD | USD deriving (Eq, Show) 

data Amount = Amt Decimal Currency 

 

instance Show Amount where 

    show (Amt amt currency) = show amt ++ show currency 

 

instance Num (Currency -> Amount) where 

    fromInteger amt c = Amt (Decimal 0 amt) c 

 

instance Num Amount where 

    (-) (Amt a1 c1) (Amt a2 c2) 

        | (c1 == c2) = Amt (a1-a2) c1 

    (+) (Amt a1 c1) (Amt a2 c2) 

        | (c1 == c2) = Amt (a1+a2) c1 

 

instance Eq Amount where 

    (==) (Amt a1 c1) (Amt a2 c2) = (a1==a2) && (c1==c2) 

 

instance Ord Amount where 

    compare (Amt a1 c1) (Amt a2 c2) 

        | (c1 == c2) = compare a1 a2 

 

instance Eq Terms where 

    (==) (One a1) (One a2) = (a1 == a2) 

 

instance Ord Terms where 

    compare (One a1) (One a2) = compare a1 a2 

    compare (One a1) Zero = compare a1 0 

    compare Zero (One a2) = compare 0 a2 

    compare Zero Zero = EQ 

 

instance Eq Contract where 

    (==) (Contract n1 t1) (Contract n2 t2) = (t1 == t2) 

 

instance Ord Contract where 

    compare (Contract n1 t1) (Contract n2 t2) = compare t1 t2 
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amountToDecimal (Amt a c) = a 

------------------------------------------------------------------------------ 

 

 

 

        -- Operations on Terms 

 

------------------------------------------------------------------------------ 

zero :: Terms 

zero = Zero 

 

one :: Amount -> Terms 

one = One 

 

scale :: Obs Int -> Terms -> Terms 

scale = Scale 

 

give :: Terms -> Terms 

give = Give 

 

and :: Terms -> Terms -> Terms 

and = And 

 

or :: Terms -> Terms -> Terms 

or = Or 

 

cond :: Obs Bool -> Terms -> Terms -> Terms 

cond = Cond 

 

when :: Obs Bool -> Terms -> Terms 

when = When 

------------------------------------------------------------------------------ 

 

Code: Calendar Model 

revobs :: Obs Bool -> Obs Bool 

revobs (Obs o) = Obs (\time -> (if (o time) then False else True)) 

 

rmdups :: (Ord a) => [a] -> [a] 

rmdups = map head . L.group . L.sort 

 

merge :: [Int] -> [Int] -> [Int] 

merge xs     []     = rmdups (0:xs) 

merge []     ys     = rmdups (0:ys) 

merge (x:xs) (y:ys) = rmdups (x : y : merge xs ys) 

 

add :: [Int] -> [Int] -> [Int] 

add xs [] = rmdups (0:xs) 

add [] ys = rmdups (0:ys) 

add (x:xs) (y:ys) = rmdups ((x+y) : (merge (add (x:xs) ys)  (add xs (y:ys)))) 

 

mult :: Int -> [Int]-> [Int] 

mult x ys = map (x *) ys 

 

--data types 

 

type Event = [Int] 

type Calender = Obs Event 

 

--eval 

 

zeroCal :: Calender 
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zeroCal = konst [0] 

 

oneCal :: Amount -> Calender 

oneCal k = konst [1] 

 

scaleCal :: Obs Int -> Calender -> Calender 

scaleCal o cal = lift2 mult o cal 

 

zipCalOr :: Calender -> Calender -> Calender 

zipCalOr cal1 cal2 = lift2 merge cal1 cal2 

 

zipCalAnd :: Calender -> Calender -> Calender 

zipCalAnd cal1 cal2 = lift2 add cal1 cal2 

 

shift :: Calender -> Obs Bool -> Calender 

shift cal (Obs o) = Obs (\time -> (if (o time) then (getValue cal time) else (getValue zeroCal time))) 

 

giveCal :: Calender -> Calender 

giveCal cal = lift2 mult (konst (-1)) cal 

 

--contract eval calender 

 

evalCalenderAt :: Time -> Terms -> Calender 

evalCalenderAt t = calender 

    where 

        calender Zero                   = zeroCal 

        calender (One k)                = oneCal k 

        calender (Give c)               = giveCal (calender c) 

        calender (o `Scale` c)          = scaleCal o (calender c) 

        calender (c1 `And` c2)          = zipCalAnd (calender c1) (calender c2) 

        calender (c1 `Or` c2)           = zipCalOr (calender c1) (calender c2) 

        calender (Cond o c1 c2)         = zipCalAnd (shift (calender c1) o) (shift (calender c2) (revobs o)) 

        calender (When o c)             = shift (calender c) o 

 

Code: Monte Carlo Simulation 

data Dist = Dist Decimal Decimal 

 

mean :: Dist -> Decimal 

mean (Dist m sd) = m 

 

std :: Dist -> Decimal 

std (Dist m sd) = sd 

 

zeroP :: Obs Dist 

zeroP = (konst (Dist 0 0)) 

 

oneP :: Amount -> Obs Dist 

oneP amt = konst (Dist (amountToDecimal amt) 0) 

 

convertToP :: Model -> Time -> Currency ->  Terms -> Obs Dist 

convertToP m t c0 Zero = zeroP 

convertToP m t c0 (One (Amt amt c)) 

    | (c0 == c)  = oneP $ Amt amt c0 -- No need to convert anything 

    | otherwise  = oneP $ Amt (amt *. currentER) c0 

    where 

        -- Exchange Rates 

        observableER = (exchangeRate m) c c0 

        currentER    = realToFrac $ getValue observableER t 

 

scaleP ::Obs Decimal -> Obs Dist -> Obs Dist 

scaleP (Obs o) (Obs p) = Obs (\t -> (Dist ((mean (p t)) * (o t)) ((std (p t)) * (o t)))) 
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andP :: Obs Dist -> Obs Dist -> Obs Dist 

andP (Obs p1) (Obs p2) = Obs (\t -> (Dist ((mean (p1 t)) + (mean (p2 t))) ((std (p1 t)) + (std (p2 t))) )) 

 

maxTP :: ExchangeRate -> Time -> Obs Dist -> Obs Dist -> Obs Dist 

maxTP exchR t (Obs p1) (Obs p2) = if ((mean (p2 t)) > (mean (p1 t))) then (Obs p2) else (Obs p1) 

 

evalTermsAtP :: Model -> Time -> Terms -> Obs Dist 

evalTermsAtP m t = evalP 

    where 

        evalP Zero                      = zeroP 

        evalP (One amt)                 = convertToP m t (mainCurrency m) $ One amt 

        evalP (Give c)                  = scaleP (Obs (\t -> (-1))) (evalP c) 

        evalP (Zero `And` Zero)         = zeroP 

        evalP (Zero `And` (One amt))    = oneP amt 

        evalP ((One amt) `And` Zero)    = oneP amt 

        evalP (c1 `And` c2)             = (evalP c1) `andP` (evalP c2) 

        evalP (c1 `Or`  c2)             = maxTP (getValue ((exchangeRate m) USD USD) t) t (evalP c1) (evalP c2) 

        evalP (Cond (Obs o) c1 c2)      = if (o t) then (evalP c1) else (evalP c2) 

--         evalP (When (Obs o) c)          = if (o t) then (discAll m t (evalP c)) else zeroP 

        evalP (Scale (Obs s) (One (Amt amt cur))) = oneP $ Amt (amt *. (realToFrac $ s t)) cur 

 

interestWalk :: Float -> [Float] -> [Float] 

interestWalk = walk 

    where walk currentIr (x:xs) = (currentIr * x) : (walk (currentIr * x) xs) 

 

interestWalkAll :: Float -> Int -> [[Float]] 

interestWalkAll a = walkMore 

    where 

    walkMore 0 = [] 

    walkMore n = (walkMore (n-1)) ++ [(interestWalk a (map (/ 100) (map unsafePerformIO x)))] 

                                                           where x = (getStdRandom (randomR (90, 110))) : x 

 

disc :: [[Float]] -> Float -> Int -> Int -> Float 

disc intr p k = discin 

    where 

    discin 0 = p 

    discin n = (discin (n-1))*(1 + (intr!!k!!(n-1))) 

 

discSum :: [[Float]] -> Float -> Int -> Int -> Float 

discSum intr p 0 n = disc intr p 0 n 

discSum intr p k n = (discSum intr p (k-1) n) + (disc intr p k n) 

 

discMean :: [[Float]] -> Float -> Int -> Float 

discMean intr p n = (discSum intr p ((length intr)-1) n)/(fromIntegral (length intr)) 

 

discVarSum :: [[Float]] -> Float -> Int -> Int -> Float 

discVarSum intr p 0 n = 0 

discVarSum intr p k n = (((disc intr p k n) - dmean) * ((disc intr p k n) - dmean)) + (discVarSum intr p (k-1) n) 

    where dmean = discMean intr p n 

 

discVar :: [[Float]] -> Float -> Int -> Float 

discVar intr p n = (discVarSum intr p ((length intr)-1) n) / (fromIntegral ((length intr)-1)) 

 

discAll :: [[Float]] -> Float -> Int -> Dist 

discAll intr p n = Dist (discMean intr p n) (discVar intr p n) 

 

 


