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Abstract

The emergence of behavioural and structural congruence based on simple 

local interactions of atomic units is a fascination to the scientific community 

across  many  disciplines.   The  climax  of  behavioural  congruence  and 

emergence of behaviour is exemplified by the community life-style of ants. 

Each individual ant possesses the capability to solve only part of the overall 

puzzle  while  aggressively  communicating  in  primitive  methods  with  the 

spatially  related neighbours  to produce emergent  behaviour.   Hence,  ant 

colonies have evolved means of performing collective tasks, which are far 

beyond the capabilities of their individual structures.  The consensus is that 

comprehension  of  emergent  complexity  in  insect  colonies  such  as  ants 

would  serve  as  a  good foundation  for  the  study  of  emergent,  collective 

behaviour in more advanced social  organisms.   As evidence of structural 

congruence, the realisation of a phenotype from a single genotype during 

the embryonic development,  and some theories  of the human mind that 

describe intelligence as a synergy of mindless constituents provide insight to 

the emergence theories.  These facts argue that there exists a fundamental 

theory  for  structural  and  behavioural  congruence  that  is  yet  to  be 

discovered.

The primary hypothesis of the research is that the constituent atomic actions 

of a complex behaviour could be successfully coordinated by collaborative 

and  autonomous  agents  that  are  loosely  coupled  through  implicit 

communication to demonstrate emergent congruent behaviour in dynamic 

environments.   The  resulting  congruent  behaviour  could  be  further 

optimised  by  using  a  hybrid  learning  approach  that  models  adaptive 

behaviour on a static foundation of innate elementary behaviour.  
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The AAANTS model was conceptualised and implemented as a platform to 

represent  the  biologically  inspired  learning  model  to  test  the  research 

hypothesis.   The  model  encompasses  aspects  related  to  coordination, 

knowledge  representation  and  adaptation  by  reinforcements.   Two 

experimental  domains  were  implemented  on  this  platform,  related  to 

foraging in a grid-world and robotic arm movements to grab and push an 

object.  The experiments demonstrated relative improvements in achieving 

behavioural  congruence  using  the  AAANTS  model  in  relation  to  the 

traditional Monte-Carlo based methods.   The research has also identified 

further improvements to the model that would enhance the capabilities in 

achieving  higher  levels  of  behavioural  congruence  in  heterogeneous 

application domains.
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Chapter 1

Introduction



Chapter 1- Introduction

1.1 Introduction

The survival of an entity in the environment is directly attributed 

to  selecting  the  most  appropriate  and  refined  behaviour  with 

respect to the rapid changes in the environment.  Behaviour of this 

nature could be called as congruent with reference to the current 

demands of the environment.  However, over a period of time due 

to  the  changes  and  demands  of  the  environment,  the  existing 

behaviour could become obsolete.  Hence, behaviour should adapt 

and improve, or simply be congruent to the latest changes in the 

environment.

The adaptive  entities  in  the natural  world  use  emergent  models 

[HAZY04]  [SUMP00]  [MATA94a]  [PAOL97]  [PARU97b]  to 

achieve  behavioural  congruence.   These  models  begin  with  an 

innate layer of basic incongruent atomic behaviour, which based 

on the reinforcements and or supervisions from the environment 

reaches a level of refinement more aligned with the demands of the 

environment.   Hence,  dynamically  and  stochastically  combining 

atomic behaviour that are either accepted or rejected based on the 

reinforcements from the environment tends to provide a high level 

of behavioural congruence in natural systems.

Most  of  the  current  artificial  models  on  reaching  behavioural 

congruence  focus  mainly  on top-down disintegration [SUMP00] 

[MATA94a] [PAOL97] of constituent actions coordinated centrally 

according  to a  prescribed  algorithm or reinforcements  from the 

environment.   Even  though  many  scientists  have  contributed 

immensely  during  the  past  few  decades  to  the  progress  of 
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behavioural  congruence  on  artificial  substance,  this  domain  still 

remains void of a major breakthrough in comparison with natural 

models  of  emergent  behaviour.   We  are  yet  to  experience 

intelligent behaviour from a non-biological substance which is at 

least comparable to most basic levels of behaviour in a primitive 

biological organism.

The  success  of  the  naturally  occurring  models  in  delivering 

abundance  of  heterogeneous  and  congruent  behaviour  using 

concepts  of  emergence,  innateness  and adaptations  has  inspired 

the thesis of this research.  The primary hypothesis of the research 

is  that  the  constituent  atomic  actions  of  a  complex  behaviour 

could  be  successfully  coordinated  by  collaborative  and 

autonomous  agents  that  are  loosely  coupled  through  implicit 

communication to demonstrate emergent congruent behaviour in 

dynamic environments.  The resulting congruent behaviour could 

be  further  optimised  by  using  a  hybrid  learning  approach  that 

models  adaptive  behaviour  on  a  static  foundation  of  innate 

elementary behaviour.

The  research  proposed  a  conceptualised  artificial  intelligence 

model that encompasses aspects related to learning, coordination 

and knowledge representation.  This model was called as AAANTS 

(Adaptive Autonomous Agent colony interactions with Network 

Transparent Services). The name of the model was coined based 

on  the  initial  experiments  related  to  heterogeneous  distributed 

services and the inspiration gained from the insect world.  Software 

agent paradigm was selected as the reference concept due to its 

inherent capabilities to solve a problem using myriad interactions 
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of simple,  automated and co-ordinating entities.   The AAANTS 

model  focussed on a special  co-ordinating approach that refines 

the innate  capabilities  through implicit  communication among a 

community of participating agents. 

1.2 Motivation

The age old ambition of creating intelligence on artificial substance 

that is anthropomorphic in nature is still considered a dream yet to 

be  realised  by  humans.   It  was  this  curiosity  that  initiated  the 

investigation  into  the  behavioural  complexity  found  in  nature, 

which subsequently became the foundation of this research.

There are several theories, models and paradigms that have given 

inspiration  and  direction  to  the  work  carried  out  in  this 

dissertation.  Naturally occurring collective systems of individually 

simple animals such as populations of insects and turtles together 

with  artificial  phenomena  such  as  traffic  jams  suggest  that 

individual  complexity  is  not  a  necessity  for  complex  intelligent 

behaviour of colonies of such entities [PARU97a] [RESN94].  

The  community  life-style  of  ants  was  an  inspiration  to  this 

research.  It was estimated that the Ants’ success story spans over 

several  millions  of  years  preceding  the  known  era  of  human 

existence [HOLL94].  Each individual ant possesses the capability 

to  only  solve  part  of  the  overall  puzzle  while  aggressively 

communicating  in  primitive  methods  with  the  spatially  related 

neighbours  to produce emergent  behaviour.   Ant  colonies  have 

evolved  means  of  performing  collective  tasks,  which  are  far 

beyond  the  capacities  of  their  individual  structures.  This 
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phenomenon is demonstrated without being hard-wired together 

in  any  specific  architectural  pattern  and  without  central  control 

[PARU97a],  hence void of any kind of top-down control.   The 

consensus is that comprehension of emergent complexity in insect 

colonies such as ants would serve as a good foundation for the 

study of emergent, collective behaviour in more advanced social 

organisms,  as  well  as  leading  to  new  practical  methods  in 

distributed computation [BABA01] [GARC01].  Therefore, the key 

motivation was  to device  an artificial  learning  model  that  could 

demonstrate collective intelligence analogous to insects.

The “Society of Mind” theory by Marvin Minsky [MINS86], was 

another inspiration to this research.  This theory portrays the mind 

as a collection of mindless components that interact and compete 

to provide intelligent emergent behaviour.  Society of agents in the 

mind  is  triggered  by  external  sensations  where  agents  act 

individually but in a cooperative and synchronised manner.

The incarnation of a complete multi-cellular being starting from a 

single fertilised egg seems like a heavenly secret to all  of us and 

certainly a motivation to this research.  It is the initial set of genes 

in a fertilised egg that helps a simple cellular growth to be morphed 

into a complex combination of organs found in a complete animal. 

It is amazing that every cell  contains a complete footprint of all 

genes found in the initial cell and each cell only represents a single 

instance  of  the  overall  pattern.   This  aspect  of  different  cells 

expressing same genes at different levels could be called as a sub-

pattern where most patterns are in fact combinations of a small 

number  of  basic  patterns  [SALA00].  Hence,  a  gene  could  be 
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compared  to  a  conductor  leading  an  orchestra;  the  conductor 

makes no music on its own but with the proper participants could 

produce  a  symphony  of  enormous  beauty  and  complexity 

[ELMA99].

1.3 Research Objectives

Congruent behaviour could be achieved through several methods. 

However,  persistence  of  congruent  behaviour  in  relation  to  the 

dynamics  of  the  environment,  and  further  the  sustenance  of 

congruence over a considerable period of time is still considered 

non-trivial based on the current artificial models and architectures 

[JENN95]  [PATT91]  [KAEL91]  [FERB99]  [WEIS00].   This 

research  tends  to  take  a  step  in  the  direction  of  sustaining 

behavioural congruence using coordination methods from nature 

based on emergence.  The following objectives should be realised 

to evaluate the accuracy of the hypothesis.

The primary objective of the research is to evaluate whether the 

bottom-up  emergent  methodologies  [HAZY04]  [SUMP00] 

[MATA94a]  [PAOL97]  [PARU97b]  could  provide  similar  or 

improved  results  in  comparison  to  the  methodologies  that 

prescribe behaviour composition in a top-down manner to achieve 

behavioural congruence in dynamic environments.

An objective  of this  research is to device a learning model  that 

mixes  innateness  capabilities  and  reinforcement  learning  to 

enhance the overall capabilities of an emergent system.  The basic 

forms of biological  life  such as insects  primarily  depend on the 

innate  capabilities  that  are  genetically  imprinted  in  the  genome 
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which  are  later  represented  by  the  phenotype.   However,  more 

advanced forms of life such as mammals uses the innate layer of 

capabilities  as  the  basis  to  build  more  advanced  and 

environmentally suitable behaviour that are further refined through 

reinforcements.

An  objective  of  this  research  is  to  evaluate  whether  multiple 

congruent behavioural instances could result from a static layer of 

innateness  based  on  the  differentiated  reinforcements  from the 

environment.

An  orthogonal  objective  is  to  evaluate  whether  the  accepted 

learning  methods  such  as  the  Monte-Carlo  algorithm  could  be 

further  enhanced  by  using  multiple  agents  that  implicitly 

coordinate through a shared context of information.  The outcome 

should  out  perform individual  additive  contribution  of  multiple 

agents, hence resulting in some level of emergence.

1.4 Research Contributions

The AAANTS model for Emergent Behaviour

The most important contribution of this research is a model that 

could simulate the behavioural congruence of elementary actions 

of a community of software agents.  The model encompasses the 

aspects of the Artificial Intelligence Mix (AI Mix).  The congruence 

in behaviour results from the emergent nature of the model mixed 

with reinforced adaptations and frame-based representations.

The rationale for emergent behaviour is that the action breakdown 

of  the  overall  behaviour  is  not  predetermined  and  could  result 
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from  simple  interactions  of  elementary  actions.   In  top-down 

approaches,  the  designer  of  the  behaviour  is  responsible  for 

creating  the  elementary  functional  breakdown  and  inter-

dependencies.

Mixing Innate and Adaptive Learning Models using Action 

Templates

A  popular  method  of  demonstrating  emergence  of  intelligent 

behaviour  [MATA94a]  [PAOL97]  is  the  use  of  pure 

reinforcements [SUTT98a] to guide the overall behaviour towards 

the  expected  optimum level  of  congruence.   However,  another 

orthogonal  approach based on the inspiration from nature is  to 

complement  the  reinforcement  process  with  an  innate  layer  of 

capabilities.

The  uniqueness  of  the  AAANTS model  is  the  use  of  a  hybrid 

model (use both innate and adaptive techniques) for implementing 

adaptability.  The model enhances the inherited innate foundation 

of  capabilities  using  the  reinforcements  retained  from  the 

environment.  The key concept that represents innate behaviour is 

described  as  Action  Templates  (ATs).   The  objective  of  the 

adaptive layer is to optimise the coordination of elementary actions 

within  an  AT  to  be  congruent  with  the  demands  of  the 

environment.  It would be evaluated that the introduction of an 

innate layer would considerably improve the process of simulating 

congruent behaviour.
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The Influence of Hubs

The  concept  of  hubs  discussed  in  complex  scale  free  networks 

[BARA03], was fused with the AAANTS approach in identifying 

special environmental states called as hubs.  It was found out that 

the use of these special states improved the capabilities in reaching 

optimum behaviour.

Distributed  Agent  Platform  for  Implementing  Emergent 

Behaviour

The  author  evaluated  a  wide  range  of  popular  software  agent 

frameworks/platforms  to  implement  the  AAANTS  model 

(discussed in section 2.2.5, Table 2.1).   However,  it  was realised 

that  the  hybrid  nature  of  the  AAANTS  model  requires 

considerable  customisation  to  the  existing  platforms;  hence 

consequently,  the decision was taken to develop a generic agent 

framework to facilitate the objectives of the research.  The generic 

agent platform of AAANTS is also an orthogonal contribution of 

this research.

The realisation of the AAANTS model resulted in a fully fledged 

generic  agent  platform  that  could  be  configured  to  different 

experimental situations.  Three experiments were modelled on this 

platform,  out  of  which  only  two  experiments  were  taken  for 

analysis.  The AAANTS agent platform could be called as a hybrid 

platform when  compared  to  other  popular  platforms  based  on 

cognitive and reactive models.
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Identifying Situations through Temporal Sensory Frames

Inputs from sensations over a period of time could be separated 

into discrete temporal collections of data points.  Each temporal 

instance of sensory data values would be introduced as Sensory 

Frames.   A  unique  pattern  for  each  temporal  snapshot  of  a 

sensation could be obtained using the limited matrix of hubs and 

their relationships.   Further, a collection of Sensory Frames that 

define a situation could be identified using a matrix that represents 

hub values  across  the temporal  frames.   This  concept  could be 

enhanced further to identify  unique patterns in multiple sensory 

modalities.  

Biologically Inspired Heuristics for Congruent Behaviour

As mentioned in the motivation section, the prime fascination and 

inspiration to this research is the altruistic nature of ant behaviour 

in  the  natural  world.   Research  in  myrmecology  has  presented 

concepts  on  a  wide  variety  of  heuristics  used  by  ants  in 

coordinating behaviour.  Some of these heuristics were selected as 

applicable to the thesis of this research and incorporated to the 

AAANTS coordination model.   The experimental  results of this 

research have disclosed the usefulness of these heuristics to build 

artificial models of intelligence.
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Chapter Contributions 

Area of Contribution
Chapters

2 3 4 5 6

Insect Behaviour X

Multi-Agent Systems/ Software Agent 

Platforms X X

Emergence X X

Reinforced Learning / Machine 

Learning X X

Innate Behaviour X X X

Knowledge Representation / Frames X X X

Heuristics for Emergence X

Reproducing Behaviour X

Hubs X X

AAANTS Model X X X

Fuzzy Clustering Algorithms X X X

Action Templates X X X X

AAANTS Platform X X

Grid World Experiment X X

Robotic Arm Experiment X X
Table 1.1: Dissertation contribution summary
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1.5 Dissertation Overview

A summary of the rest of the chapters are described below.

Chapter 2 – The Foundation: Ants, Agents and Intelligence

The main objective of this chapter is to provide a comprehensive 

background to the concepts and technologies used in building the 

AAANTS  model.   This  chapter  starts  with  an  introduction  to 

software agents and further continues to discuss the architectures, 

communication,  composition,  mobility  and  ontological 

commitments related to agent technology.  Further, a background 

to concepts related to artificial intelligence such as reinforcement 

learning  and frame-based knowledge representation is  discussed. 

The  chapter  concludes  with  a  discussion  on  the  inspiration  of 

natural systems to the research.

Chapter  3  -  Behavioural  Congruence  through  Implicit 

Communication

This chapter contains the essence of the methodologies that helped 

to formulate the AAANTS coordination model.  Emergence based 

on bottom-up strategies was discussed in detail which resulted in 

formulating  six  heuristics  which  were  later  used  to  build  the 

proposed model.  Further, the coordination methodology based on 

action  templates  and  behavioural  concentres  that  dynamically 

change based on reinforcements is discussed in detail.
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Chapter 4 – Reinforced Group Adaptation

This chapter focuses on the methodologies of learning adapted by 

the AAANTS model.  The adaptations are discussed in two broad 

strategies.   Initial  discussion relates  to the  use  of  reinforcement 

learning as perturbations to the internal knowledge representations 

of  agents.   This  is  the  main  mechanism  that  facilitates  the 

participants of an agent colony to adjust each other for behavioural 

congruence.   The  latter  part  of  this  chapter  focuses  on  the 

continuation of  existing  knowledge  to future  generations  of  the 

colony

Chapter 5 – The AAANTS Platform

This chapter  concentrates on the implementation aspects  of the 

AAANTS agent platform.  A new agent platform was developed to 

realise the objectives of the research since the existing platforms 

required  considerable  adaptations  and  enhancements.   The 

AAANTS platform was further moulded to deliver the results of 

the two experiments to justify the generic nature of the platform. 

A separate external simulator was developed for the Grid-World 

experiment  and  the  Lego  Mindstorms  Robotic  kit  was  used  to 

implement the robotic arm experiment.

Chapter 6 – Simulations and Experiments

This chapter provides an in-depth description of the experiments 

conducted  to  evaluate  the  hypothesis  of  this  research.   The 

experiments  span  across  two  experimental  domains,  the  Grid-

World Foraging and Robotic Arm Movement.  
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Chapter 7 – Evaluations and Conclusions

The objectives of the research are discussed with respect to the 

results  of  the  experiments.   A  further  detailed  discussion  of 

improving  and  extending  the  AAANTS  model,  platform  and 

experiments is discussed in the future work section.
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Chapter 2 - The Foundations: Ants, Agents and Intelligence

2.1 Introduction

During the background study of this research it was identified that 

basic  ingredients  of  intelligence  are  related  to  the  aspects  of 

coordination, adaptation and representation.  These aspects would 

be referred to as the “AI Mix” for easy reference in the rest of the 

discussion.  The future success of artificial intelligence projects and 

research would depend on finding the appropriate AI Mix to create 

different  grades  of  intelligence.   The  rest  of  this  chapter  is  a 

discussion  that  journeys  through the  ingredients  of  the  AI  Mix 

with special emphasis on collective intelligence, agent technology, 

reinforcement learning and frame-based knowledge representation 

techniques which would act as the background for this research.

2.2 The Concept of Software Agents

One  of  the  most  difficult  hurdles  to  overcome,  though 

surprisingly,  is  the definition of the term “Software Agent” in a 

standard manner using one or more phrases.   This term is very 

casually used in the industry to even describe systems that does not 

possess accepted agent characteristics. According to Michael Luck 

[LUCK99], this vagueness in the definition has attributed to both 

progress and confusion within the community.  However, a clear 

definition to the term “Software Agent” should be given before 

proceeding to rest  of  the discussion.   Appendix  A gives a  near 

exhaustive  list  of  software  agent  definitions  by the authoritative 

authors within the agent research community.  These definitions 

could be used to derive the common characteristics expected by 

Page 16 of 352



Chapter 2 - The Foundations: Ants, Agents and Intelligence

the software agent designers.  With the assistance of these listed 

definitions  in  Appendix  A,  software  agents  could  be  broadly 

defined  as  software  artefacts  that  are  intelligent,  autonomous, 

adaptive, goal-driven, cooperative and reactive to the environment 

in order to assist and act on behalf of humans.

2.2.1 Software Agent Characteristics

There are number of characteristics that should be prevalent in a 

software entity for it to be recognised as a software agent.  These 

characteristics could be segmented as compulsory and orthogonal, 

though there still prevails a controversy among the authorities in 

the field of such a demarcation.  The continuation elucidates each 

of the important agent characteristics found in the software agents 

such  as  autonomy,  adaptability,  cooperation,  rationality  and 

mobility.

Autonomy is an important and compulsory characteristic expected 

out of a software agent.   Autonomy is defined as an independent 

and purposeful existence of states that does not directly rely on any 

external entity [INVE96] [FRAN96].  This independence could be 

explained  as  the  ability  of  an  entity  to  act  without  direct 

intervention of humans or other agents maintaining control over 

its own actions and internal state [JENN98] [JENN95a] [BRAD97] 

[FERB99].  This requires aspects of periodic actions, spontaneous 

execution, and initiation; in that the agent must be able to take pre-

emptive  actions  that  would  eventually  benefit  the  beneficiary 

[LEON97] [PETR96].   Further,  autonomous systems decide for 

itself on how to relate its sensor data to motor commands in such 
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a way that its goals are attended successfully [PATT94].  Therefore, 

autonomy simply means the ability of an entity to determine goals 

on its own.

In the context  of a  Multi-Agent System1,  there  could be agents 

with different degrees of autonomy.  Agents could be categorised 

as  goal  generating  and  goal  adapting  agents  [LUCK96].   Goal 

generating agents are autonomous,  since they do not depend on 

the goals of others, but instead possess goals, which are generated 

from internal motivations.  Goal adapting agents achieves harmony 

by aligning goals with other agents that have common objectives. 

Therefore, an autonomous agent possess motivations that could be 

evaluated with reference to the environment, hence its behaviour is 

determined by both external and internal factors.

The above facts, though offering explanation regarding autonomy, 

introduced  some  controversy  with  reference  to  different  agent 

paradigms such as the cognitive and the reactive.  Most of the facts 

are  more  appropriate  for  cognitive  agents2,  however;  goal 

generation and achievements are performed in a collective manner 

in reactive models3.  

If a system is able to improve over a period of time and become 

better at achieving its goals with experience [BRAD97] [FRAN96], 

then  it  demonstrates  Adaptive  or  Learning  capabilities  which  is 

1 Multi-Agent  Systems  in  a  basic  sense  could  be  described  as  a  collection  of  software  agents  that  interact  for 

cooperative behaviour.
2 Cognitive  agents  are  characterised  by  an  internal  symbolic  reasoning  model  used  to  engage  in  planning  and 

negotiation with other agents.
3 The reactive agents do not have any internal symbolic models of their environment, and they act using a stimulus-

response type of behaviour.
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considered  as  a  compulsory  characteristic  of  a  software  agent 

system.  Therefore,  if  an autonomous agent is  able to adjust its 

goals in terms of what it perceives in the changing environment, it 

could be called as adaptive.

Three basic types of adaptations could occur in software agents, 

namely,  learned,  evolved  and  pre-programmed  [GARC01].   In 

learned adaptation, agent behaviour is improved over a period of 

time  using  a  learning  process,  and  in  evolved  adaptation  the 

improvement is  complemented by an inherited set of behaviour 

that  undergoes  natural  selection  [GARC01].   Pre-programmed 

adaptation is the easiest to achieve, as they are usually in the form 

of  hard-coded  logic  by  the  creator  [GARC01].   The  work 

introduced  in  this  dissertation  focuses  on  learning  techniques 

related to learned and evolved adaptation.

Cooperation through discourse is another important characteristic 

of an agent system.  The agents could be designed for discourse to 

achieve objectives similar to that of humans.  The prerequisites for 

a discourse are participants that need to communicate, a media, a 

language for expression and a defined ontology understood by the 

participants [LEON97].  Practically, an ontology is an agreement to 

use a vocabulary in a way that is  consistent  with respect  to the 

theory specified by it [MIZO95] [GRUB93].  During a discourse, 

the participants generally require two-way feedback, in which both 

parties  make  their  intentions  and  abilities  known  and  mutually 

agree  on  something  resembling  a  contract  about  what  is  to  be 

done,  and by whom [JENN98].  In software agent systems,  the 
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media  for  discourse  is  usually  provided  by  information  transfer 

among network and memory based transport channels.

An Agent Communication Language (ACL) represents language of 

expression which is a facilitator for communication with respect to 

the software agent terminology [JENN95a] [BRAD97] [FRAN96] 

[FERB99].   With  reference  to  ACLs  there  are  few  accepted 

protocols  within  the  cognitive  agent  paradigm  such  as  KQML 

(Knowledge  Query  Mark-up  Language)  and  FIPA  ACL 

[LACE00a] [LACE00b] [DIMI98].

The above discussed characteristics are considered essential for an 

agent-based system by the academia.   However,  there  are other 

orthogonal  characteristics  that  could  be  accepted  as 

complementary  to  software  agent  systems  such  as  mobility 

[JENN95a]  [BRAD97]  [FRAN96],  reactivity  [JENN95a] 

[MICH99]  [FRAN96]  [WOOL00],  rationality  [JENN95a], 

personalisation  [MICH99]  [FRAN96],  veracity  [JENN95a], 

benevolence  [JENN95a]  and  goal-directedness  [JENN95a] 

[JENN98] [FRAN96].  Out of these characteristics, rationality and 

mobility  are  considered  important  [JENN95a]  [BRAD97] 

[FRAN96], hence discussed below.

The  characteristic  of  Rationality  relates  to  making  the  right 

decisions  and  producing  successful  behaviour  where  social 

rationality  should  enable  agents  to  select  behaviour  that  would 

maximise  the expected  utility  in  a  social  context  as  opposed  to 

being individualistic [HOGG97].  A rational agent could be viewed 

as  a  system  continuously  receiving  perceptual  input  from  the 
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environment  in which it  is  embedded and responding by taking 

actions that affect that environment [KINN92].  A rational agent is 

assumed irrational if world models and the models of other agents 

are non-existent [MATA94b].  According to the Principle of Social 

Rationality [HOGG97], if a member of a responsible society could 

perform an action whose joint benefit is greater than its loss, then 

it may select that action.

Mobility enables an agent-based software artefact to be transferred 

to another host location with the execution state preserved during 

the  movement  [MFAC97].   This  capability  permits  agents  that 

must  conduct  a  high-bandwidth  conversation  to  move  to  a 

common processor, as a result that the network as a whole is not 

burdened with the traffic between them.  Movement to a common 

processor using mobility also permits local communities of agents 

to interact with each other even when the processor on which they 

are  located  is  disconnected  from  the  rest  of  the  network 

[PARU98].   However,  mobility  in  heterogeneous platforms may 

become  complicated  due  to  authorisation  and  authentication 

mechanisms.

2.2.2 Software Agent Classifications

There is a considerable amount of applied and pure research done 

in  the  field  of  software  agent  technology  by  the  industry  and 

academia.   Consequently,  there  are  many  varieties  of  software 

artefacts  labelled  as  “Software  Agents”.   To overcome possible 

confusions some researchers have prescribed a nomenclature that 
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spread across several dimensions.  Some of these dimensions are 

discussed in continuation.

Software  agents  could  be  classified  using  a  subset  of  the 

characteristics they possess.  As per the discussion in the previous 

section  it  is  clear  that  a  basic  agent  should  at  least  possess 

properties  such as autonomy,  goal-orientedness,  adaptability  and 

cooperation.   The  mobile  agents,  learning  agents  and  mobile-

learning  agents  could  be  described  as  some  of  the  popular 

categories  of  software  agent  systems  [FRAN96].   Another 

classification  is  derived  based  on  the  discussed  characteristics: 

collaborative  agents,  interface  agents  and  smart  agents 

[NWAN96a].   Apart  from these  characteristics,  software  agents 

could  be  classified  based  on  the  function  such  as  information 

gathering, filtering or depending on the control mechanism such as 

algorithmic,  rule-based,  planner,  fuzzy,  neural  nets  and machine 

learning [FRAN96].  

Prior  to  describing  the  next  type  of  agent  classification,  several 

definitions  of  knowledge  representation  based  on  symbolic  and 

numeric  methods  needs  to  be  clarified.   Symbolic  and numeric 

paradigms offer  two different  description languages for defining 

intelligent systems.  In order for any system to serve the role of a 

representation, it must include an encoding process that maps the 

physical state of the external environment into an internal state and 

a decoding process that maps an internal state into a physical state 

of the external environment [HONA94].    
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A definition  for  deliberative  agents  could  be  derived  from  the 

cognitive  thinking  paradigm,  and is  characterised  by  an internal 

symbolic  reasoning  model  used  to  engage  in  planning  and 

negotiations  [NWAN96a]  [FERB99].   When  the  internal 

specification of an agent is defined by a language, such agents are 

commonly  referred  to  as  cognitive,  rational,  deliberative,  or 

heavyweight [WEIS00].  According to Jacques Ferber [FERB99], 

the  cognitive  agents  could  be  called  “intentional”,  due  to  the 

presence of goals and explicit plans that allow them to achieve long 

term objectives.  Further, cognitive systems need to cooperate with 

each other to achieve community wide goals that are usually too 

complex to accomplish individually.

The  reactive  agent  concept,  which  could  also  be  called  as  an 

emergent organisation, claims that it is not necessary for agents to 

be individually intelligent, for a system to demonstrate intelligent 

behaviour [COLO93].  The reactive agents do not have an internal 

symbolic  model  of  their  environment,  and  they  act  based  on 

stimulus-response type of behaviour by responding to the present 

state of the environment in which they are embedded [NWAN96a] 

[FERB99]  [COLO93].   Therefore,  due  to  the  absence  of  an 

internal model of the environment and possible actions within the 

state  space,  reactive  agents  cannot  be  expected  to  individually 

implement goal-directed behaviour in respect of cognitive models.

The combinations of the above discussed list of dimensions may 

result in a myriad of agent typology.   However,  for the sake of 

clarity  and understanding,  this  space  could  be  reduced to  a  list 

containing  agent  types  such  as  collaborative,  interface,  mobile, 
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information, reactive, hybrid and smart agents. Out of these types, 

the logic based approaches are elegant, and have clean semantics 

[WEIS00]  [NWAN96a].   The  disadvantages  of  logic  based 

approaches  being  the  inherent  computational  complexity  of 

theorem proving makes it questionable whether agents as theorem 

proving  could  operate  effectively  on  time  constrained 

environments [WEIS00].

2.2.3 Agent Theory and Architecture

The  agent-based  research  activities  have  become  common  and 

widespread within the Artificial Intelligence research community. 

The  research  projects  spread  across  a  wide  spectrum  of  agent 

capabilities  and  many  specialises  on  different  combinations  of 

agent-based  features.   According  to  N.  Jennings  and  M. 

Wooldridge [JENN95a] [WOOL94],  the software agent research 

could  be  broadly  segmented  into  areas  based  on  Theory  and 

Architectures.

Agent theory is regarded as a specification of an agent where agent 

theorists  develop  formalisms  for  representing  the  properties  of 

agents,  and using these  formalisms,  try  to develop theories  that 

capture desirable properties  of agents [JENN95a].   Further, it  is 

expected that a realistic  agent  theory would be represented in a 

logical framework that combines these various components and a 

complete  agent  theory,  expressed  in  logic  with  properties,  must 

define  how  the  attributes  of  agency  are  related  [JENN95a]. 

According  to  Mark  d’  Inverno  et  al  [INVE97],  formal  agent 

theories are agent specifications, not only in the sense of providing 
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descriptions and constraints  on agent behaviour,  but also in the 

sense  that  one  understands  the  term “specification”  from main 

stream  software  engineering,  namely  that  they  provide  a 

foundation  from  which  to  design,  implement  and  verify  agent 

systems.

The agent architectures embark on the practical aspects of agent 

technology.  An agent architecture simply specifies how an agent 

could be decomposed into the construction of a set of modules 

and  how  these  modules  should  be  made  to  interact  [PATT91] 

[KAEL91].   Also,  for  architecture  to be useful,  the total  set  of 

modules and their  interactions  should provide an answer  to the 

question of how the sensor data and the current internal state of 

the agent  determine the actions  and future  internal  state of  the 

agent.  This is further described in a more implementation related 

manner by Gerhard Weiss [WEIS00], as a mapping of the internal 

capabilities of an agent, its data structures, the operations that may 

be performed on these  data structures,  and the control  flow of 

these data structures.

Agent architecture is broadly segmented into deliberative, reactive 

hybrid and layered architectures.  Deliberative architectures contain 

an  explicitly  represented  symbol  model  of  the  world  where 

decisions  are  made  via  logical  reasoning,  based  on  pattern 

matching and symbolic manipulation [JENN95a].  According to N. 

Jennings et al [JENN95a], a drawback of this approach is that it is 

difficult to build useful symbol manipulation algorithms that would 

guarantee  to  terminate  with  useful  results  within  an  acceptable 
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fixed  time  period  and  further,  though  this  approach  is  very 

attractive in theory, it currently seems to be unworkable in practice.

On the other  hand,  a  reactive  architecture  does  not  maintain  a 

symbolic model of the world either in a complete or incomplete 

manner and therefore lacks symbolic reasoning found in cognitive 

agent architectures.  The Agent Network Architecture [PATT91] is 

an example of a reactive system.  Here the agents are defined as a 

set of competence modules and each module is specified by the 

designer  in  terms of  pre  and post  conditions  with  an actuation 

level, which gives a real-valued indication of the relevance of the 

module to a particular situation [PATT91].

Hybrid architecture uses a blend of both deliberative and reactive 

approaches. An obvious approach is to build an agent out of two 

or  more subsystems:  a  deliberative aspect  containing  a  symbolic 

world model, which develops plans and makes decisions in the way 

proposed by the mainstream symbolic AI; a reactive aspect, which 

is  capable  of  reacting  to  events  that  occur  in  the  environment 

without  engaging  in  complex  reasoning  [JENN95a].   Often the 

reactive  component  is  given same kind  of  precedence  over  the 

deliberative,  therefore  that  it  could provide a  rapid  response  to 

important  environmental  events.  The  concept  of  flexible  agents 

could be regarded as of hybrid nature; reactive when responding to 

changes in the environment and deliberative when planning ahead 

of time [RUI02].

Another important characteristic of many architectural models is 

the nature of being layered.  Layered architecture is currently the 
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most popular general class of agent architecture available because 

being layered facilitate natural decomposition of functionality.  The 

advantages of layered approaches are evident when analysing many 

systems  found  in  nature  from  animal  anatomy  to  eco-systems. 

According  to G.  Weiss  [WEIS00],  there  could  be  two types  of 

control  flows within layered architecture,  namely,  horizontal  and 

vertical.  In horizontal layered architecture, the software layers are 

each directly  connected  to the sensations  and actuations  and in 

vertical  layered  architecture  sensations  and  actuations  are 

processed  by  a  specialised  layer.   Subsumption  architecture 

[VIDA02] is a good example for layered approach for connecting 

perceptions and actions.  This is accomplished by building a series 

of incremental layers, each layer connecting perceptions to actions.

According to G. Weiss [WEIS00], the main problem with layered 

architectures is that while they are arguably a pragmatic solution, 

they  lack  the  conceptual  and  semantic  clarity  of  non-layered 

approaches. In particular, while logic based approaches have clear 

logical semantics, there is no clear consensus when aligning such 

semantics  to layered architecture  [WEIS00].   The  other  issue  is 

related to the interaction between layers [WEIS00].  If each layer is 

an  encapsulation  of  a  defined  independent  function,  then  it  is 

necessary  to  consider  all  possible  combinations  that  the  layers 

could  interact  with  one  another.   However,  layered  architecture 

had  been  very  successful  in  many  research  and  industrial 

applications based on agents, mainly due to inherent advantage of 

been able to use a divide-and-conquer strategy.
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2.2.4 Multi-Agent Systems (MAS)

Multi-agent  systems,  in  a  basic  sense  could  be  described  as  a 

collection  of  software  agents  that  interact  for  cooperative 

behaviour.   They  could  also  be  defined  as  a  tuple  of  three 

elements: a set of agents, an environment, and a coupling between 

agents and the environment [PARU96].  According to Peter Stone 

[STON98],  a  multi-agent  system  is  a  subfield  of  artificial 

intelligence that aims to provide both principles for construction 

of  complex  systems  using  multiple  agents  and  coordination 

mechanisms for agent behaviour.

The  multi-agent  approach  lies  at  the  crossroads  of  several 

disciplines such as Distributed Artificial Intelligence and Artificial 

Life  [FERB99],  hence  represents  some  vagueness  in  definition. 

Therefore,  to  overcome  the  obscurity,  common  characteristics 

should  be  identified.   There  are  several  common characteristics 

found  in  a  typical  multi-agent  system  [WEIS00]  [BABA01] 

[FERB99] [AYLE98] such as the availability of a communication 

infrastructure, the lack of central  design,  distributed-independent 

processes and the applicability to inherently distributed problems. 

Generally, multi-agent systems offer a way to relax the constraints 

of centralized, planned, sequential control, though not every multi-

agent  system  takes  full  advantage  of  this  potential.  They  offer 

production systems that are decentralized rather than centralized, 

emergent  rather  than  planned  and  concurrent  rather  than 

sequential  [PARU94].   The  multi-agent  systems  are  more 

impressive  compared  to  single  agent  systems  due  to  space 
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distribution,  parallelism,  time  distribution,  divide  and  conquer, 

cost, reliability and robustness [RUI02].

A  multi-agent  system  is  identified  as  a  concept  and  is  clearly 

separated from mechanisms and technology.  Hence, multi-agent 

systems could use object-oriented expert systems and distributed 

computing  technologies  to  implement  applications  and  toolkits 

[AYLE98].  Multi-agent system is a highly diverse field and there 

are  many  domains  of  applicability.   However,  the  applicability 

could be broadly classified into five categories: distributed problem 

solving,  collective  robotics,  simulations,  construction  of 

hypothetical  worlds  and  design  of  programs  [FERB99].   The 

concept of MAS is very important to this research due to that fact 

that the implemented AAANTS platform is designed based on this 

paradigm.

2.2.5 Software Agent Applications and Platforms

Software  agents  are  not  a  panacea  for  industrial  software 

[JENN96], and like any other technology they are best used for 

problems whose characteristics require their particular capabilities. 

Software agents are appropriate for applications that are modular, 

decentralised,  changeable,  ill-structured,  and complex  [JENN96]. 

Hence, problems that naturally exhibit the above characteristics are 

suitable for software agent implementations.

Application domains in which software agent solutions have been 

applied  or  researched  includes  workflow  management,  network 

management,  air-traffic  control,  business  process  re-engineering, 

data  mining,  information  management,  electronic  commerce, 

Page 29 of 352



Chapter 2 - The Foundations: Ants, Agents and Intelligence

education,  personal  digital  assistants,  e-mail  filtering,  digital 

libraries,  command  and  control,  smart  databases  and  schedule 

management [NWAN96a].  

According  to  Tihamer  Toth-Fejel  [TOTH00],  MRP 

(Manufacturing Resource Planning) and ERP (Enterprise Resource 

Planning)  software  products  are  too  limited  and  complex  and 

require a multi-million dollar and multi-year implementation effort, 

with  no  guarantee  of  full  success.   In  addition,  scaling  these 

complex software systems is  unthinkable.   It  is  also understood 

that  small-grained  software  agent  based  systems  promise  an 

alternative way of handling the complexity and could be specially 

used to solve scheduling related issues [TOTH00].  

Another application area for software agents is in Robotics.  The 

marriage of robotics with software agents could be used for wide 

variety  of  applications  such  as  extraterrestrial  exploration 

[GARC01],  manufacturing  plants  [BADI04]  [PARU96b],  supply 

chain management [MEHR97], submarine exploration [GARC01], 

bomb  deactivation  and  rescue  [KOES06]  and  entertainment 

[NICO06].

A vast range of multi-agent platforms are prevalent in the industry 

and  academia.   They  have  helped  to  explain  the  complexity, 

advantages and disadvantages of different  concepts,  models  and 

theories.   Some of the popular agent platforms evaluated during 

this  research  as  generic  agent  implementations  were  Aglets 

[VENN97],  FIPA-OS  [NORT01]  [PEDD02],  ADE  [MEHR97] 

[ANDR03], AARIA [BAKE99], MadKit [RICO00], AgentBuilder 
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[RICO00],  JACK  [RICO00],  dMARS  [INVE97b],  JADE 

[BELL99],  Grasshopper  [BAUM99]  and Zeus [RICO00].   Each 

platform implements a mixture of agent characteristics described 

earlier  and some are  limited  to  specialised  application  domains. 

During the early stages of this research the author experimented 

and  prototyped  with  platforms,  such  as  Aglets,  JADE, 

Grasshopper and Zeus to evaluate the alignment to the research 

objectives.   A  more  elaborative  discussion  on  related  agent 

platforms is found in Appendix B.

Page 31 of 352



Chapter 2 - The Foundations: Ants, Agents and Intelligence

Characteristics
Aglets 

(ASDK)
FIPA-OS Grasshopper JADE Zeus

Standard 

Compatibilities

MASIF, 

CORBA, Java

FIPA, Java, 

CORBA

Java, MASIF, 

FIPA, CORBA

Java, FIPA, 

CORBA

FIPA, Java 2

Communication 

support

Sockets, 

Message 

passing 

agents

ACL, IIOP, RMI, 

XMK.

ACL, Sockets, 

RMI, IIOP

ACL, RMI, 

IIOP, WAP, 

XML

KQML, ACL

Mobility Weak mobility 

through Java 

serialisation

Not in-built, may 

be modified.

Weak mobility Weak 

Mobility

No

Security Policy Roles, 

Context/Serve

r security, 

Proxy, Java 

security.

RMI over SSL. External – 

X.509, SSL; 

Internal – 

Java security

Connection 

Auth, user 

Validation, 

RPC 

encryption, 

Object 

Manager

ASCII 

encoded, 

Safe Tcl 

scripts, MIME 

compatible, 

PKI 

standards.

Availability Free source Free source Free source Free source Free source

Usability & 

Documentations

Clear, simple, 

good GUI and 

good 

documentation

Average GUI 

and 

documentation

Good GUI, 

very well 

documented

Very good 

GUI, Docs 

and 

acceptance.

Very weak 

docs, 

Development 

Facilities

ASDK 

development 

with Java

Java Java 2, 

Windows CE, 

Web plug-in

Java, LGPL 

open source

BT product

Implementations Electronic Air 

Tickets

Applications 

related PDA etc.

IT 

management, 

Mobile 

agents, 

process 

integration.

eBusiness, 

Wireless 

applications,

e-commerce, 

work-flow 

applications

Table 2.1: Comparison of agent platform characteristics

The analysis and comparison of the five important agent platforms 

evaluated during the initial stages of the research are depicted in 

Table  2.1.   Most  of  the  listed  comparative  dimensions  were 
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extracted from industry analysis [NGUY02] [LESZ04] [BURB04]. 

Some of the platforms are tightly coupled to an agent model such 

as in the case of AgentBuilder and JACK platforms being based on 

BDI  agent  model  [RICO00].  Most  of  the  agent  platforms  are 

compatible  to  acceptable  agent  standards  such  as  FIPA  and 

MASIF.

2.3 Machine Learning Techniques

The following is a discussion of the techniques adapted by most of 

the  current  software  agent  implementations  for  the  purpose  of 

learning.   The  selection  of  a  learning  technique  is  of  prime 

importance  to an agent  system and is  usually  decided based on 

dimensions  such  as  the  application  domain,  expected  temporal 

feed-back  latency  (on-line  and  off-line),  knowledge  structures 

utilised  and  limitations  on  resources.   The  distributed  machine 

learning  techniques  are  given  special  emphasis  during  the 

discussion because of their applicability to the AAANTS research. 

2.3.1 Background on Machine Learning

According to A. Drogoul [DROG98], distributed machine learning 

could be broadly segmented into individual agent learning, group 

of agents learning, and organisational learning.  Individual agents in 

a  multi-agent  system could employ different  learning  techniques 

such  as  functional  learning,  direct  learning  and  model  based 

learning  (myopic-learning  and  strategic-learning)  where  model-

based learning requires more complex knowledge representations 

than  those  used  in  reinforcement  learning  [DROG98].   During 

organisational learning, system internal structures are evaluated on 
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the  usefulness  to  the  whole  group  [DROG98]  where  class  of 

adaptive algorithms called genetic programming [WHIT00] could 

be used to evolve these structures.

The  nomenclatures  used  by  Van Parunak  et  al  [PARU97a],  for 

machine  learning  techniques  include  categories  such  as 

ontogenetic,  phylogenetic  and sociogenetic  techniques.   Classical 

artificial intelligence learning could be called as ontogenetic which 

takes place within a single agent during the course of its existence. 

Phylogenetic  mechanisms  such  as  genetic  programming  could 

improve  the  behaviour  of  a  species  of  agents  over  successive 

generations.  Sociogenetic  mechanisms  that  construct  markers  in 

the environment could enable an agent community as a whole to 

learn even if  individual agents are not modified.   Each of these 

mechanisms demands different requirements on the behaviour of 

the  agents.  According  to  Van  Parunak  et  al  [PARU97a], 

phylogenetic learning is not nearly as demanding as the ontogenetic 

mechanisms  developed  in  classical  artificial  intelligence,  and 

sociogenetic mechanisms could be even simpler.

Layered learning is a machine-learning paradigm defined as a set of 

principles for the construction of a hierarchical, learned solution of 

a  complex  task  which  allows  for  a  bottom-up  definition  of 

subtasks at different hierarchical levels [STON00].  Similar to other 

layered  approaches,  learned  subtasks  are  organised  into  layers 

[STON00] where each layer is complemented by layers above and 

below.   The  overall  learned  output  of  a  layered  artificial  entity 

involves the contribution of all concerned adaptive layers.  Hence, 

Page 34 of 352



Chapter 2 - The Foundations: Ants, Agents and Intelligence

the learned capabilities  are  not  central  but  distributed across  all 

layers. 

Another  interesting  theory  based  on  the  specialisation  and 

generalisation of information was presented by Marvin Minsky in 

his  much  sought  after  book,  The  Society  of  Mind  [MINS86]. 

According to his theory, there are two types of strategies to learn 

from  the  environment:  Uniframers  and  Accumulators.   The 

approach of Uniframers is to disregard discrepancies in favour of 

regularities where they tend to be perfectionists but also tend to 

think in terms of stereotypes.  However, this may sometimes lead 

to recklessness because they have to reject some evidence in order 

to produce Uniframes.  On the other hand, accumulators are less 

extreme since they keep collecting evidence, hence are much less 

prone  to  mistakes,  but  with  the  deficiency  of  making  less 

discoveries.  When aligning these two strategies to a typical human 

learning experience, it is evident that many of us use a mix of these 

strategies in different  learning situations.   However,  the ratio of 

application  of  Uniframes  and  Accumulators  vary  based  on  the 

human personality.

Learning  could  also  be  performed  by  analysing  differences, 

recording cases, managing multiple models and by training neural 

nets [WINS92] [RUSS95].  Learning by analysing differences could 

be done by using induction heuristics that enable  procedures to 

learn  descriptions  from  positive  and  negative  experiences 

[WINS92].  Learning by recording cases uses consistency heuristics 

to identify or recognise a new object with reference to some earlier 

known  situation  [WINS92].   Learning  by  managing  multiple 
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models  uses  positive  and negative  examples  to  create  a  version 

space, which could be used to find solutions to a specific problem 

[WINS92].   A version space  is  a  representation  that  enables  to 

keep track of all the useful information supplied by a sequence of 

learning  examples,  without  remembering  any  of  the  examples 

[WINS92].  Lastly, neural nets explain how neural like elements, 

arranged in nets, could be used to recognise instances of patterns 

[WINS92] [RUSS95].

The learning based on the feedback given from the environment is 

generally  called as reinforced learning.   This  feedback could fall 

into a dimension that is limited at two ends by means of purely 

evaluative  feedback  and  purely  instructive  feedback  [SUTT98a]. 

Purely  evaluative  feedback  provides  a  value  that  indicates  the 

suitability  of  the  action  taken  and  purely  instructive  feedback 

indicates  the  correct  action  to  take  [SUTT98a].   Therefore, 

instructive feedback is also called supervisory since it instructs the 

correct action to take [SUTT98a] in contrast to giving freedom for 

selecting an action which the agent evaluates as suitable.  In other 

words, supervised learning could be discussed as a general method 

for  training  a  parameterised  function  approximator,  such  as  a 

neural network where it requires sample input-output pairs for the 

function  to  be  learnt  [HARM96]  [RUSS95].   Therefore, 

supervisory  learning  techniques  do not  control  the environment 

but rather behave as instructed by the environment [SUTT98a].  

According  to  L.P.  Kaelbling  [KAEL96],  there  are  several 

differences  between  reinforcement  learning  and  supervised 

learning.   Among  them  the  absence  of  input-output  pairs  and 
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requirement  for  online  performance  with  reference  to 

reinforcement  learning  are  considered  as  major  differences. 

Another  key  difference  is  that,  in  reinforcement  learning  the 

software agent is never told the correct action to take in a situation, 

but  only  some  measure  of  relative  suitability  is  indicated 

[REYN02],  consequently,  it  is  up  to  the  software  agent  to 

independently  select  the  most  suitable  behaviour  based  on  the 

feedback from the environment.

A  complex  task  could  be  achieved  through  the  execution  of 

elementary  actions.   The sequential  execution of a  collection of 

elementary actions to implement a complex task is of trivial nature. 

However, in most behavioural contexts, tasks require overlapped 

concurrent execution of actions by individual control units.  This is 

similar to the operation of the brain where many parts of the brain 

are activated in parallel and through competition, these concurrent 

regions of the brain attract those inputs they handle particularly 

well,  and  they  are  recruited  for  those  tasks  which  require  a 

particular form of computation [ELMA99].   The key issue with 

concurrency  is  related  to  identifying  the  optimum coordination 

strategy.  Whenever the state and action space is large, a distributed 

approach to perform the computation is desirable because it makes 

computational  speedups  from  coarse-grain  parallelism  possible 

[SCHN98].  

The progress indicators [MATA94b] could be effectively used to 

measure  progress  during  a  behaviour  composed  of  elementary 

actions.   These  indicators  were  evaluated  with  reference  to 

experiments done on foraging behaviour of ants.  While immediate 

Page 37 of 352



Chapter 2 - The Foundations: Ants, Agents and Intelligence

reinforcement  is  not  available  in  many  domains,  intermittent 

reinforcements  could  be  provided  by  estimating  the  progress 

relative to its current goal and weighing the reward accordingly. 

The progress indicators diminish brittleness of a learning algorithm 

by  decreasing  sensitivity  to  noise,  encourage  exploration  in  the 

behaviour space, and decrease fortuitous rewards [MATA94b].

Social  or  observational  learning  is  the process  of acquiring new 

behaviour  patterns  in  a  social  context,  by  learning  from 

conspecifics  [MATA94b].  Social  learning  could  be  implemented 

through imitation and mimicry [MATA94b]. Though both mimicry 

and imitation observe and repeat the behaviour of another agent, 

in mimicry the mimicking agent does not understand the goal of 

the behaviour or the internal state of the agent being mimicked 

[MATA94b].   The  social  facilitation  is  another  social  learning 

method  which  refers  to  the  process  of  selectively  expressing 

behaviour  which  is  already  part  of  an  animal’s  species-specific 

repertoire [MATA94b].  A society could develop social rules based 

on  individual  learning  if  the  agents  are  able  to  estimate  other 

agents’  reinforcement  and  their  individual  reinforcement  is 

positively correlated with their conspecifics [MATA94b].

2.3.2 Reinforcement Learning

Reinforcement Learning is described as a computational approach 

that  could  be  used  to  understand  and  automate  goal-directed 

learning and decision making through trial-and-error in a dynamic 

interactive environment [RUSS95] [HARM96] [TUNG01].  This is 

a computational approach that study learning from interaction with 
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the environment [SUTT98b].  Therefore, the two most important 

and distinguishing features of reinforcement learning is trial-and-

error  and  delayed  reward.   It  is  distinguished  from  other 

computational  approaches  by  its  emphasis  on  learning  by  an 

individual  from direct  interaction  with  its  environment,  without 

relying  on  exemplary  supervision  or  complete  model  of  the 

environment  [SUTT98a].   In  summary,  a  reinforcement  learner 

interacts with its environment by adaptively choosing its actions in 

order to achieve definite long-term objectives [TUNG01].

Reinforcement learning is not a type of neural network, nor is it an 

alternative  to  neural  networks,  but  rather,  it  is  an  orthogonal 

approach  that  addresses  a  different,  more  difficult  question 

[HARM96].  The early connection between neural networks and 

reinforcement  learning  may  have  led  to  the  persistent 

misconception that the latter is a subfield of the former [RUSS95]. 

Therefore,  there  seems  to  be  a  dependency  of  reinforcement 

learning on neural networks due to early relationships [RUSS95] 

and was  confirmed by  Mance  Harmon [HARM96]  by  declaring 

that  reinforcement  learning  combines  the  fields  of  dynamic 

programming and supervised learning.

The two of the most highly researched methods in reinforcement 

learning so far by the research community were Monte-Carlo (MC) 

and Temporal Difference (TD) [SUTT98a].  These methods could 

be further enhanced and also combined in flavour with the use of 

techniques  such  as  approximation,  eligibility,  models,  and 

active/passive learning [SUTT98a].  
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2.3.3 Elements of Reinforcement Learning

Reinforcement Learning requires a basic framework consisting of 

two  elements:  Agent4 and  Environment  [SUTT98a].  These  two 

elements  interact  in  a  continuous  or  discrete  manner.   The 

environment presents the agent with current state information and 

the agent should select appropriate actions to transfer from one 

state to another, subsequently being rewarded by the environment 

for  the  appropriateness  of  the  action  taken.  An  agent’s  prime 

objective  is  to  maximise  rewards  from the  environment  over  a 

period of time.  However, the term agent is referred to any entity 

that could be of monolithic or distributed form, sharing a distinct 

set  of  objectives.   The  agent  interaction  with  the  environment 

could  be  considered  as  discrete  through  time.   These  discrete 

interactions  could be described as either  episodic  or  continuous 

[SUTT98a].   Episodic  interactions  naturally  divide  the  agent 

actions  to  segments  or  episodes  where  as  in  continuous 

interactions, this demarcation is absent.

The environment of a reinforced learning problem could be either 

a  Markov  Decision  Process  (MDP)  or  a  Partially  Observable 

Markov  Decision  Process  (POMDP).   According  to  Richard 

Sutton et al [SUTT98a], a state signal that succeeds in retaining all 

relevant information5 is said to be Markov, or to have the Markov 

property.   The  learning  methods  based  on  Markov  Decision 

Process  require  complete  observation  [KAEL96].   In a  Markov 

situation  the  optimal  policy  for  the  agent  is  considered 
4 The term agent represents the active adaptive entity that is connected to its environment via perceptions 

and actions.
5 The state signal should retain or imply information that has lead to the current situation or state.
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deterministic  solely  on  the  current  state  as  past  knowledge  or 

experience is not required to take suitable action [TUNG01].  If 

the state and action spaces are finite, then it is called a finite MDP 

[ARAI00].

The reinforced agent-environment interaction could be described 

using a series of notations.  The identified variables are: t: Discrete 

time steps, S: Set of possible states, A: Set of available actions, R: 

Reward value.  An agent at a given time t and been in state Sst ∈ , 

which takes  an action  Aat ∈ ,  would be given a reward  Rrt ∈+1 . 

There are four main sub-elements to a reinforced learning system 

such as a policy, a reward function, a value function, and optionally 

a  model  of  the  environment  [SUTT98a]  [HARM96]  [KAEL96]. 

The following is a discussion of these elements’ contribution to the 

overall reinforced learning process.

A policy is used to define the behaviour of a learning agent.  In a 

broader sense, a policy is a mapping from perceived states of the 

environment,  to  actions  to  be  taken  when  in  those  states,  and 

corresponds  to  a  set  of  stimulus-response  rules  or  associations 

[HARM96] [CASS95].  A policy could be implemented by means 

of a simple lookup table function that maps actions to stimulations 

or by a complex search process.  Further, according to Bob Price 

[PRIC03], the calculation of the optimal policy could be done by 

either model-based or model-free approaches.

A primary objective of a learning agent is to find a policy, mapping 

states  to  actions,  that  maximizes  the  long-run  measures  of 

reinforcement  [KAEL96].   According  to  Richard  Sutton  et  al 
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[SUTT98a], policy is the core of a reinforced learning agent in the 

sense  that,  it  alone  is  sufficient  to  determine  behaviour.   The 

difference between a policy and a plan is that a plan specifies  a 

sequence of actions to perform and does not necessarily specify 

the appropriate action for each possible situation [CASS95].

Further,  a  policy  could  be  either  deterministic  or  stochastic 

[SUTT98a] [CASS95].  A deterministic policy is one that specifies a 

single action to take in each state.  A stochastic policy specifies the 

probabilities of a number of possible actions to execute in each 

state  where  the  value  of  a  state  is  defined  as  the  sum  of  the 

reinforcements received when starting in that state and following 

some fixed  policy  to  a  terminal  state  [SUTT98a].   The  optimal 

policy would therefore be the mapping from states to actions that 

maximizes  the  sum  of  the  reinforcements  when  starting  in  an 

arbitrary  state  and  performing  actions  until  a  terminal  state  is 

reached [HARM96].  In the AAANTS model, a stochastic policy is 

used to select the optimum actions during exploitation mode of 

activities.

The next element of the reinforcement learning methodology is the 

reward function and is usually provided by the environment to the 

learning  agent.   A  reward  function  defines  the  goal  in  a 

reinforcement learning problem and it maps perceived states of the 

environment  to  a  single  value  called  a  reward  [SUTT98a] 

[TANG02]. Therefore, a reinforcement agent should be designed 

with an inherent urge to maximise the rewards it receives over a 

long period of time.
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A particular state may provide a list possible actions and the agent 

may  initially  need  to  try  actions  at  random  in  order  to  gather 

enough information on expected rewards.  An agent with a limited 

list of information about actions and rewards may tend to act in a 

greedy  fashion.   Also  the  rewards  shouldn’t  be  evaluated  in 

isolation since a single reward value cannot be compared with a 

reference  value.   Therefore,  rewards  could  only  be  gauged  in 

comparison to other reward values generated during trial-and-error 

activities.  A central intuition underlying reinforcement learning is 

that actions followed by large rewards should be made more likely 

to  recur,  whereas  actions  followed  by  small  rewards  should  be 

made less likely to recur [SUTT98a].  A reference level, called the 

reference  reward  [SUTT98a]  could  be  used  by  a  learner  for 

evaluating  rewards  and  the  reference  could  be  the  average  of 

previously received rewards.  Learning methods based on this idea 

are called reinforcement comparison methods [SUTT98a].

The  incorporation  of  models  and  planning  into  reinforcement 

learning systems is a relatively new development [SUTT98a].   A 

model  incorporates  the  planning  capabilities  to  a  reinforcement 

learning system.  This means that any way of deciding on a course 

of action by considering possible future situations before they are 

actually experienced [SUTT98a].  According to Richard Sutton et 

al  [SUTT98a],  early  reinforced  learning  systems  were  explicitly 

trial-and-error  learners  and  it  gradually  became  clear  that  these 

methods  are  closely  related  to  dynamic  programming  methods, 

which do use models, and that they in turn are closely related to 

Page 43 of 352



Chapter 2 - The Foundations: Ants, Agents and Intelligence

state-space planning methods.  However, building and maintaining 

a model is an optional feature in a reinforcement learning system.

2.4 The Notion of Intelligence and Knowledge

According  to  Dimitris  Chorafas  [DIMI98],  intelligence6 is  a 

reflection of the environment, the situation and the subject that we 

consider.   Further,  Carlos  Garcia  [GARC01],  claims  that 

something  could  be  called  intelligent  if  that  entity  exhibit 

behaviour  that  is  considered  intelligent  by  an  outside  observer. 

Therefore, what is defined as intelligent is relative and may differ 

depending on the type of  behaviour  and the view point  of  the 

observer.   There  is  also  an  argument  that  intelligence  is  a 

propensity or ability to adapt [KENN01].  It is identified that the 

proper  understanding  of  simple  behaviour  are  prerequisites  to 

understanding  higher  levels  of  intelligence,  as  they  are  the 

precursors in evolutionary history [PFEI02].

In order to demonstrate intelligence there are several key elements 

identified  such  as  perception7,  cognition8,  conceptual  modelling, 

logical  representation  and memory  [DIMI98]  [MICH99].   Since 

intelligence is of relative nature, the above key ingredients could be 

mixed  in  various  combinations  to  achieve  different  levels  of 

intelligence.   The  components  that  characterise  increasingly 

intelligent behaviour are memory, calculation, learning, inference, 

speculation,  abstract  thinking,  concretization  of  thoughts  and 

6 “The ability to apply knowledge to manipulate one's environment or to think abstractly as measured by 

objective criteria” [WEBS88]. “Quickness of understanding, sagacious” [OXFO88].
7 Perception is the awareness of the elements of the environment through physical sensations.
8 The act or process of knowing including both awareness and judgement is called as cognition.
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integration [DIMI98].  Memory, calculation and learning could be 

described  as  lower  levels  of  intelligence  that  is  usually 

demonstrated by current state-of–the-art intelligent agents.  When 

evaluating recent contributions to artificial intelligent artefacts by 

the research community it  is  evident  that the considerations  are 

more towards the lower  levels  of  intelligent  behaviour and new 

innovative  paradigms,  theories  should  be  forwarded  by  the 

research community to achieve relatively anthropomorphic levels 

of intelligence.

A very  important  aspect  required  to  demonstrate  intelligence  is 

knowledge.   Knowledge  could  be  of  real  use  only  when  it  is 

properly represented.  Therefore, knowledge representation is an 

important  criterion  for  systems  that  demonstrate  intelligence. 

According  to  Randall  Davis  et  al  [DAVI93],  knowledge 

representation plays five distinctive roles that; it is fundamentally a 

surrogate  to  the real  thing,  there  should  be a  degree  of  fidelity 

between the representation and the real thing, it is a fragmentary 

theory  of  intelligent  reasoning,  it  is  a  medium for  pragmatically 

efficient computation, and it is a medium of human expression.  It 

is  understood  that  knowledge  should  be  used  to  refer  to  the 

representations that support behaviour [ELMA99].

Knowledge could also be expressed as relations  among facts  or 

episodes, as well as between these facts and their values [DIMI98]. 

Defining a relation among facts, establishing causality (the relation 

between  a  cause  and  its  effect),  mapping  the  relations  through 

signs and rules, and manipulating them to obtain a result could be 

considered as signs of knowledge [DIMI98].  Further, the concept 
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of knowledge,  as  it  had been developed in artificial  intelligence, 

could  be  defined  as  all  the  information  (learning,  know-how, 

experience,  memories,  concepts  and  facts)  needed  by  a  human 

being  (or  machine),  organised  in  such  a  way  that  an  individual 

could  carry  out  a  task  considered  as  being  complex  [FERB99]. 

Though  we  discuss  knowledge  in  unison,  there  are  different 

variations  of  knowledge  such as skills,  virtue,  world  knowledge, 

crystallised intelligence and fluid intelligence [DIMI98].

It  would be valuable  to differentiate  the confusion between the 

terms,  data  and  knowledge.   According  to  Riichiro  Mizouchi 

[MIZO95], data stored in databases are less context-sensitive than 

knowledge; in other words data could be interpreted independently 

of any context than knowledge.  When a user applies knowledge in 

a knowledge base to a different problem, special attention should 

be  given  to  the  context  of  the  problem  solving  and  check 

applicability of the knowledge.

2.4.1 Techniques of Knowledge Representation

From the point of view of classical artificial intelligence, knowledge 

could be represented in the form of a set of symbols expressed in 

units  of  knowledge  called  as  “symbolico-cognitivist”  paradigm 

[FERB99].   This  model  considers  that  the  representations 

accessible to an individual are expressed in the form of symbols, 

which  directly  refer  to  the  entities  of  the  world  in  which  an 

individual  is  immersed.   These  symbols  are  articulated with  the 

help  of  an  internal  language,  the  syntax  of  which  is  generally 

derived from the logic of first-order predicates [FERB99].   The 
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reasoning consists of manipulating these sets of symbols to form 

other sets through a process of inference.  

The  next  form  of  knowledge  representation  is  that  of  a 

connectionist  point  of  view,  which  assumes  that  knowledge  is 

integrally distributed within a network of cellular automata in the 

form of numerical values attached to connections [FERB99].  The 

connectionist models are mathematical or computer models based 

roughly  on  the  local  structure  of  nervous  systems  of  animals 

[STAN95].  Many features of the nervous system are suppressed 

and  that  several  simplifying  assumptions  are  made  [STAN95]. 

Connectionist reasoning consists of propagating numerical values 

within this network, that is, modifying the connections established 

between the different  elements  in the network.   The interesting 

thing about this approach is that reactive systems could be created 

which are capable of learning and of having adaptive behaviour by 

linking  perceptions  directly  to  actions,  without  any  explicit 

intervention by cognitions [FERB99].

The next  approach called as  kinetic  or  interactionist  hypothesis, 

which  postulates  that  an  individual’s  knowledge  could  be 

considered as a multi-agent system in its own right, the concepts, 

ideas  and representations  then being  agents  of  a  specific  nature 

which live inside the agents [MINS86] [FERB99].

Another  approach  for  knowledge  representation  is  based  on 

“frames”  which  is  conceptualised  with  the  use  of  K-lines 

[MINS86].  In this theory, there exists a conjecture that our brains 

are composed of a host of agents called K-lines, which could be 
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used to make records of what some of the brain agents are doing 

at a certain moment.  Later, when a particular K-line is activated, 

this restores respective agents to their respective state.  Hence, our 

knowledge  that  attaches  meaning  to  the  ideas  generated  is 

organised in a networked manner with the use of frames and K-

lines according to Marvin Minsky [MINS86].

The rules, semantic networks and frames are related to each other 

since  there  is  close  a  resemblance  to  the  approach  taken  by 

humans.   The semantic network is like a graph that consists  of 

nodes  and  links  [CAWS97].   The  links  are  unidirectional 

connections between nodes where the nodes correspond to objects 

or  classes  of  objects  in  the  world,  whereas  links  correspond to 

relationships  between  these  objects  [CAWS97].   However, 

semantic  nets  seem  to  suffer  from  representational  adequacies 

related to representing complex logic which are possible through 

other  techniques  such  as  rules  [CAWS97].   The  semantic  and 

neural  networks  have  similarities  as  well  as  differences.   A 

difference is that the links of a semantic network represents logical 

relations  between  concepts  and  the  links  of  neural  networks 

represents weighted paths along with activation energy [POLL90].

2.4.2 Knowledge Representation based on Frames

A  special  emphasis  was  given  to  the  concept  of  frame  based 

knowledge representation because it was evaluated as suitable to 

build shared memory models to be used across multiple agents and 

further frames across multiple  agents  could be amalgamated for 

coordination activities.  It was also identified based on the Society 
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of Mind theory by Marvin Minsky [MINS86], that frames are more 

suitable  for  reaching  common-sense  reasoning  models.   Hence, 

frame-based  knowledge  representation  was  selected  as  the  most 

suitable  representation  method  for  the  research  due  to  the 

AAANTS model’s  inclination to realise some level  of  common-

sense  reasoning.   A  detailed  discussion  of  the  frame-based 

representations is found in the continuation.

In  relation  to  frame-based  representations,  Marvin  Minsky 

[MINS74] argues that in order to explain the apparent power and 

speed of mental activities, there ought to be more structure to the 

chunks of knowledge than there is in logic, and the declarative and 

procedural  aspects  of  a  given  chunk  must  be  more  tightly 

connected.   Frame Knowledge  Representation  Systems  are  also 

known by a variety of names including semantic networks, frame 

systems,  description  logics,  structural  inheritance  networks, 

conceptual  graphs  and  terminologic  reasoners  [KARP93].    A 

detailed  description  of  the  structural  arrangement  of  frames 

together  with  the  control,  manipulation  and  transformation  are 

discussed in Appendix C.

The frames concept based on the original definitions is understood 

as an ontological commitment and a theory of intelligent reasoning 

based on insights about human cognition and the organization of 

knowledge in memory [DAVI93].  The concept of frame is defined 

as a data structure for representing stereotyped information about 

a situation or structure that represents knowledge about a limited 

aspect  of  the  world  [MINS74]  [REIC91]  [DAVI93].   They  are 

formed  on  the  foundation  of  previous  experiences  in  similar 
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situations  and  could  best  be  seen  as  a  structure  representing 

expectations of the system about situations of this kind [REIC91].

It  was  mentioned  that  the  concept  of  frames  as  described  by 

Marvin  Minsky  [MINS86]  is  used  to  implement  the  state 

representations.   Each  agent  will  capture  its  share  of  state 

instances, as experience of the environment grows.  These frames 

are  attached  to  each  other  in  a  manner  that  represents  the 

experience with the environment.  The links among the frames are 

strengthened  or  weakened  with  the  help  of  episodic 

reinforcements  given to the agents.   Over  a  period  of  time,  an 

agent may accumulate a vast collection of state instances, where in 

a complex environment may become impractical to maintain.  In 

order to overcome such situations humans settle down on standard 

averages  to  define  similar  states  and  also  use  heuristics  to 

overcome complex situations.  This could be called as common-

sense  reasoning.   In  a  learning  methodology,  function 

approximation techniques and non-monotonic logic could be used 

to implement such heuristics.

Object-oriented  and  frame  systems  have  many  similar 

characteristics, but are usually designed for different purposes such 

as  programming  and  knowledge  representation  respectively 

[LASS90] [KIFE95].   Central  to the object-oriented paradigm is 

the definition of types and the creation of instances of these types, 

and that types share descriptions of structure and behaviour via 

inheritance  [LASS90]  [CAWS97].  The  high-level  definitions  of 

frame systems have close semantic resemblance to object-oriented 

systems.  For example, frames and classes and also attributes and 
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slots  demonstrate  very  close  resemblance  [LASS90].   These 

similarities  qualify  the  object-oriented  techniques  as  a  suitable 

mode  of  implementation  of  frame-based  systems.   However, 

according to Michael Kifer et al [KIFE95], object-oriented systems 

require considerable improvements to be used for both knowledge 

representation and implementation.

According  to  Ora  Lassila  [LASS90],  there  are  also  considerable 

differences between frame and object concepts.  In frame systems 

inheritance  is  typically  dynamic  in  nature  when  compared  to 

object-oriented  systems.   This  allows  the  default  values  to  be 

changed  during  program  execution;  hence  frame  systems  may 

allow the use of multiple inheritance paths other than the usual is-a 

hierarchy.   Another useful feature of some frame systems is the 

ability to create and maintain multiple parallel and nested worlds 

which is not possible in object-oriented systems [LASS90].

2.5 Background on Collective Behaviour

The  concepts  of  cooperation  and  coordination  represent  some 

type of agreement among a defined set of entities in achieving a 

common goal.   Both coordination and cooperation requires  the 

participation of a collection of autonomous entities.  It would be 

ideal  to  discuss  these  two  concepts  based  on  MASs  where  a 

collection of agents autonomously execute actions for a common 

cause.   The  subtle  differences  between  cooperation  and 

coordination are discussed in continuation.
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2.5.1 Variants  of  Collective  Behaviour  based  on 

coordination and cooperation

Coordination  is  the  process  by  which  a  participant  of  a  team 

reasons about its local actions and the anticipated actions of others 

to ensure the community acts in a coherent manner [NWAN96b] 

[JENN95b]  [JENN94].   The  prime  reason  for  the  need  for 

coordination according  to N.  Jennings  et  al  and Jacques Ferber 

[JENN95b] [FERB99], is that a single entity does not posses the 

competence,  resources  and  information  to  solve  a  complicated 

problem.  A complicated global behaviour or a solution should be 

reached  with  the  contribution  of  a  community  of  agents,  each 

executing  actions  both  sequentially  and  or  concurrently  with 

others, or in other words in a coordinated manner.

In contrast, cooperation is a form of interaction, usually facilitated 

through  communication  which  requires  acceptance  and 

commitment  of  others  for  a  cause  but  excludes  the  need  for 

synchronised actions [MATA94a].  Hence, the synchronisation of 

actions  could  be  described  as  the  primary  differentiating  factor 

between coordination and cooperation.  In summary, coordination 

may  require  cooperation;  but  it  is  important  to  emphasize  that 

cooperation among a set of agents would not necessarily result in 

coordination;  indeed,  it  may  sometimes  result  in  incoherent 

behaviour [NWAN96b].

The collective behaviour is described as a subclass of cooperative 

behaviour and generically denotes any behaviour of a community 

of agents in a system [CAO95].  The differentiation of collective 
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and cooperative behaviour lies  in the fact  that the latter  should 

result in the increase of the total utility of the system [CAO95]. 

Therefore,  being  collective  does  not  suggest  the  results  of 

cooperation such as emergence and coordination.  

2.5.2 Software  Agents  Communicating  Explicitly  or 

Implicitly

A popular method of interaction among software agents is the use 

of  messages  exchanged  either  implicitly  or  explicitly  [PARU94]. 

There is considerable amount of research in the area of explicit 

communication  especially  in  the  domain  of  cognitive  agents. 

Explicit communication requires capabilities such as organisational 

structuring,  contracting,  planning,  negotiations,  arbitration  and 

collaboration  [NWAN96b]  [FERB99]  [CAO95].   Explicit 

communication  is  driven  by  commitments  undertaken  towards 

each other for future anticipated interactions.  A convention is a 

means of monitoring a commitment and the circumstances under 

which  a  commitment  could  be  abandoned,  and  how  an  agent 

should behave both locally and towards others when one of these 

conditions  arises  [WOOL00].   Usually,  agents  communicate 

explicitly  using  patterns  of  messages  called  conversations 

[LACE00a]  [LACE00b].   The  conversations  could  be  done 

through  direct  messages  or  through  mediators  (also  called  as 

brokers) with the use of performatives9 [DECK99].

The main substance of explicit agent communication is defined in 

an  Agent  Communication  Language  (ACL)  [LACE00a] 

9 A performative specifies the format of any given message and dictates how an agent should respond to 

messages.
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[GENE94].   Two  popular  communication  languages  are  the 

KQML  and  FIPA  ACL  [LACE00a]  [LACE00b]  [DIMI98]. 

According to Michael Geneserath and Narinder Singh [GENE94] 

[SING95], ACLs could best be thought of as consisting of three 

parts - its vocabulary, an inner language such as KIF (Knowledge 

Interchange  Format),  and an outer  language such as  KQML or 

FIPA ACL.  For example,  an ACL message could be a KQML 

expression in which the arguments are terms or sentences in KIF 

formed from words in the ACL vocabulary.

The  Speech  Act  Theory  is  a  high-level  theoretical  framework 

developed  by  philosophers  and  linguists  to  account  for  human 

communication based on which the ACLs are modelled [LABR94]. 

It treats communication as an action [WOOL00] and have been 

extensively  used,  formalized  and  extended  within  the  fields  of 

computational  linguistics  and  artificial  intelligence  as  a  general 

model  of  communication  between  arbitrary  agents  [LABR94]. 

There are three different  aspects  of speech acts:  the locutionary 

act, or act of making an utterance, the illocutionary act, or action 

performed in saying something, and prelocution, or the effect of 

the act [WOOL00] [LABR94].  The speech act theory has been 

used to build general  grammar out  of which arbitrary protocols 

could  be  constructed,  and agents  that  understand this  grammar 

could evolve new protocols for their conversations as they operate 

[PARU98].

A communications protocol determines how conversation among 

agents  is  structured  with  respect  to  an  ACL.   The  protocols 

determine a fixed set of options that a conversation could follow, 
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and  this  structure  is  fixed  prior  to  actual  communication 

[PARU98].  There are different communication protocols such as 

directive,  voting,  negotiation  and  speech  acts  [PARU98]. 

Especially  in  voting  and  negotiations,  a  series  of  messages  are 

exchanged  among  the  participating  agents  before  a  decision  is 

reached.

The explicit communication within cognitive agents requires top-

down view of the execution needs at each level of the organisation 

in  terms  of  sequence,  concurrency  and  interdependencies  of 

actions.   This  means  that  some  level  of  understanding  of  the 

capabilities  of  participants  and  task  distribution  among  agents 

should be known prior to commitment.  This technique is opposed 

to  the  emergent  behaviour  expectations  of  this  research  which 

needs  a  bottom-up  strategy.   Emergence  demands  dynamic 

coupling  among the participants  consequently  a  static  top-down 

view  of  participation  cannot  be  maintained.   Hence,  implicit 

communication that facilitates such dynamism is deemed suitable 

for this research.

2.5.3 Coordination Models and Structures

When  discussing  emergent  models,  top-down  hierarchical  and 

bottom-up  emergent  models  were  given  special  consideration 

within  the  research  community.   It  is  identified  that  most 

mathematical  models  of  natural  systems  fall  into  these  two 

categories [SUMP00].  In top-down models,  the relationships of 

interest are between variables that capture the global properties of 

a natural system and mathematically  as they are expressed in an 
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ordinary  or  partial  differential  equations  and bottom-up models 

start from a description of local interactions which usually involve 

algorithmic descriptions of individuals [SUMP00].

The structure of an agent community is also an important factor in 

realising  the  coordination  model.   The  two  popular  control 

structures  that  complement  the  above  discussed  coordination 

models  are  hierarchical  and  egalitarian  control  structures 

[FERB99].   The  hierarchical  structures  (defined  as  monolithic 

centralised/distributed  [DORI93])  are  associated  with  fixed 

coupling  where  commands  are  passed  down the  hierarchy  with 

each subsequent agent obeying the command given by a superior.  

The egalitarian structures are more characteristic of organisations 

in which all the agents participate in a uniform way in deriving the 

final decision.  However, according to Marco Dorigo [DORI93], 

distributed architecture, activities and intelligence are preferred in 

the  multi-agent  domain  when  compared  to  monolithic  systems. 

The  arguments  for  supporting  distributed  nature  are  that  most 

problems are physically distributed and heterogeneous, distribution 

of processing power and rapid adaptation to the environment. 

2.6 Lessons from the Nature 

The  coordinated  behaviour  of  distributed  elements  is  still  a 

conundrum to the artificial intelligence community.  However, the 

natural world is abundant of examples with the blessing of millions 

of  years  of  evolution  where  genetic  mutations  have  resulted  in 

individualistic  and  group  level  distribution  and  emergence  of 

complex  behaviour.   Consequently,  researchers  from  various 
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disciplines such as ethology, myrmecology, synecology and ecology 

have indirectly contributed immensely to the behavioural aspects 

of MASs.

2.6.1 Lessons from Natural Insect Colonies

Insects have secured special recognition within the animal world in 

relation  to  collective  behaviour  and  could  be  defined  as  the 

pinnacle of altruistic social behaviour adopted by any animal form 

on the planet.   Out  of  all  social  insects,  ants  have secured the 

highest  level  of  respect  in  relation to  producing  social  altruistic 

behaviour.  This argument is justified from the evidence disclosed 

by B. Holldobler et al, where only 13,500 species of highly social 

insects are known out of a grand total of 750,000 that have been 

recognised  to-date  by  biologists  and  9,500  of  which  are 

represented by species related to ants [HOLL94].  A fact that is 

oblivious to most humans is that these disproportions confirm that 

we live in a planet that is in fact dominated by ants in number and 

mass.

The ants are aware of no more than a few centimetres around their 

bodies and no more than minutes of time into the past and have 

no mental  construct  of  the future  [HOLL94]  [GORD99].   Yet, 

they have survived as colonies for nearly ten million generations 

when  compared  to  hundred  thousand  human  generations 

[HOLL94].   It  is  evident  from this  fact  that  ant  group  tactics, 

though being  simple,  has  enabled  them to adapt  and evolve to 

different conditions.  This element of adaptive behaviour in ants 
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with  the  use  of  simple  coordination  techniques  have  been  the 

prime inspiration to this research.

It is a well-known fact that the amazing success of the ants is due 

to the synergy arising from the members of the colony [GORD99]. 

The synergy of actions at this level of efficiency is primarily made 

possible by the advanced development of chemical communication 

capabilities  [GORD99].   The  release  of  a  medley  of  substances 

from different parts of the body called pheromones, stimulates the 

other  members  of  the  community  within  close  proximity  to 

perform actions such as alarm, attraction, nursing, food offering, 

and  a  diversity  of  other  activities  [HOLL94]  [GORD99].   The 

other  counter-part  of  this  mechanism  is  the  sensation  of  the 

chemicals, which usually is done with the use of sensory receptors 

in  the  antennas  of  the  insects  [GORD99].   Hence,  the 

communication of ants happen when individuals emit pheromones 

to the environment and others within the local vicinity senses the 

signal and activate accordingly by executing a sequence of actions 

that are either innate in genomes or learnt from experience.  It is 

confirmed that some complicated responses such as self-grooming 

and regurgitation,  appear  to be  wholly  programmed so that  the 

insect  performs  them  more  or  less  expertly  with  no  prior 

experience  [HOLL90],  which  in  another  sense  justify  innate 

behaviour.

The key attraction of ant behaviour to this research is their ability 

to  cooperate  and  coordinate  to  accomplish  complex  behaviour 

while being simple in structure and capabilities.  Hence, it is a key 

objective to identify the techniques employed by some species of 
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ants  for  co-ordinated  behaviour.   The  experiments  of  B. 

Holldobler  et  al  [HOLL94]  have  discovered  that  weaver-ant 

workers deploy several messaging techniques to guide nest mates 

in different types of activities and situations discussed below.

1. A chemical substance could be laid down as a trail and combined 

with a particular body movement, either a little dance or a touch of 

the antennae to indicate a newly found food source.

2. When a scout worker finds a suitable location for a new nest, she 

then lays a rectal-gland trail of pheromones combined with touch 

signals that convey a message of direction to the other ants in the 

colony.

3. When an enemy is encountered, the workers broadcast an alarm by 

laying  short  looping  trails  around  the  intruder,  drawn  with 

substances smeared on the ground from the Sternal10 gland.

4. Some weaver ants  have an alarm system for intruders based on 

multiple pheromones with multitude of semantics such as arousal, 

search for source of trouble, attack and aggressiveness.

Further,  ants  employ  techniques  such  as  tapping,  stroking, 

squeaking and body contact  dancing  for cooperation [HOLL94] 

[GORD99].   However,  the  most  preferred  mode  of 

communication is through pheromones.  It is identified that an ant 

species generally employ between 10 to 20 such chemical “words” 

and “phrases” each conveying a distinct but very general intuition 

such as attraction, recruitment, alarm, identification of other casts, 

10 A gland pertaining to the sternum or lower portion of the body that secrete alarm signals in ants and 

other insect species.
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recognition of larvae and discrimination between nest mates and 

strangers [HOLL94].

The theory of pheromone design is based on the concept of active 

space  [HOLL90],  which  is  the  zone  within  which  the 

concentration  of  a  pheromone  is  at  or  above  threshold 

concentration and the effect of the pheromone could be defined 

temporally and spatially [HOLL90].  However, the complexity of 

behaviour of an insect overwhelms the repertoire of pheromones 

possessed by an individual of a colony.  

It is identified that pheromones and the corresponding actuations 

may have one to many relationships due to the fact that a chemical 

could relay different messages based on the context, role, time and 

space [GORD99] [HOLL90].   This  was demonstrated from the 

experiments  carried out  by Deborah Gordon [GORD99]  where 

ants covered in oleic acid were treated as dead by nest maintenance 

workers and treated as food by foraging ants.  An important fact 

that  stems  from  these  observations  is  that  depending  on  the 

currently  occupied  activity  and  the  role  of  an  ant,  a  given 

pheromone may trigger different actions within the individuals of a 

colony.

This  fact  could  be  further  explained  using  the  concept  of 

Stigmergy [BECK94].   The consequences of behaviour affecting 

the subsequent behaviour could be called as Stigmergy [BECK94]. 

In  this  backdrop,  it  should  be  understood  that  communication 

among ants  is  indirect,  via  pheromone deposits  that  change the 

state of the environment, rather than via message passing with a 
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handshake [KEIL03].   Stigmergy could be explained by indirect 

communication prevalent in insects which use volatile pheromones 

in the environment to deposit short-term memory [BECK94].  The 

releasing and sensing of pheromones to be affected locally within a 

large  colony  of  insects  could  be  converted  to  a  myriad  of 

behavioural patterns with the use of Stigmergy.

The super organism theory11 of ants is another important way of 

looking at group work [HOLL94].  It describes an ant colony as a 

super organism consisting of the queen as the reproductive organ 

and the workers as entities that support brain, heart, gut, and other 

tissues.   The  exchange  of  food  among  the  colony  members  is 

equivalent of the circulation of blood and lymph.  This theory has 

been rejected in concept during the early 20th century but as of 

recently, there seems to be a resurgence of interest in the research 

community [HOLL94].

2.6.2 Coordination Lessons from the Nature and Facts for 

Emergence

In natural systems, the local interactions that result in the evolution 

of  complex  and  stable  behaviour  are  difficult  to  analyse  using 

traditional,  top-down  approaches  [MATA94a]  [PAOL97].   It  is 

believed that in order to reach the level of complexity found in 

nature, the behaviour must be generated through an interaction-

driven,  incrementally  refined  process  such  as  emergence 

[MATA94a].  

11 This is described in the work of William Morton Wheeler’s statements on ant colony super organism 

theory and mentioned in B. Holldobler et al [HOLL94].
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The term emergence could be explained as a property of a system 

as  a  whole  not  contained  in  any of  its  parts  and the  produced 

behaviour  would  be  more  complex  than  the  behaviour  of  the 

individual  components  [PFEI01]  [PARU97b].  Therefore,  the 

movement from low-level rules to higher-level sophistication could 

be  called  as  emergence  [JOHN02].   A  collection  of  local 

interactions  would not  truly  be considered emergent  until  those 

local  interactions  resulted  in  some  kind  of  discernible  macro 

behaviour  not  present  in  its  constituents  [JOHN02].   Such 

behaviour  could  be  called  as  “emergent  behaviour,”  because  it 

emerges from the interactions within the overall system, often in 

ways not intended by the original designers [PARU97b].

There  are  three  main  reasons  for  emergent  cooperation  in 

biological societies: pair bonding, kin selection and altruism (direct 

and reciprocal) [RUI02].  Direct altruism that results in relation to 

pair bonding and kin selection is found especially in insects where 

an  individual  has  no  life  without  the  colony  and  genetically 

imprinted  caste12 and  role/task13 mechanisms  determines  the 

individual  behaviour [GIFF00].   Hence,  the decision to become 

altruistic is inherent to the insects and does not require a cognitive 

process to handle this nature of behaviour.

However, reciprocal altruism is found in more higher-level animals 

where increase in the cognitive power of the individuals helps to 

12 Broadly defined, as in ergonomic theory, any set of individuals of a particular morphological type or age group, or 

both, that performs specialized labor in the colony [HOLL90].
13 A set of closely linked Behavioural Acts (BAs) though different in nature could be defined as a role and a particular 

sequence  of acts  that accomplishes  a  specific  purpose,  such as foraging or  nest  repair  could be called as  a  task 

[HOLL90].
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maintain mental accounts or balance sheets by which it keeps track 

of its debts to others and vice versa, as well as who cooperated and 

or cheated in the past [GIFF00].   Therefore,  reciprocal  altruism 

needs long term memory and a formula within each individual in 

the  colony  to  be  maintained  and  evaluated  when  assistance  is 

requested by another participant in the accepted group.  However, 

some  rare  types  of  altruism  practiced  by  some  humans  that 

sacrifice their lives to the good of the others should be treated as 

special.

There  seems  to  be  a  relation  between  morphogenesis  and 

sociogenesis with respect to emergence.  The set of procedures at 

the  level  of  an  organism  by  which  individual  cells  or  cell 

populations  undergo  changes  in  shape  or  position  incident  to 

organismic  development  is  called  as  morphogenesis  [HOLL90]. 

The definitive process at the level of the colony is sociogenesis, the 

procedures  by  which  individuals  undergo  changes  in  caste, 

behaviour, and physical location incident to colonial development 

[HOLL90].  Both sociogenesis and morphogenesis processes are 

perfect  examples  of  emergent  systems  where  local  elementary 

actions  result  in  complex  macro  behaviour  and  structure 

respectively.   Sociogenesis  and  morphogenesis  though 

heterogeneous in origin, gives us a hint that there is a fundamental 

theory behind emergence which is still to be resolved.

The participants acting locally by paying attention to neighbours as 

opposed to following direct orders from a superior seems to result 

in macro emergent behaviour in ant colonies, embryo development 

and other type of swarm systems [JOHN02] [GORD99].  Further, 
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there are many interpretations about the relationship among ants 

and brain cells.  It is stated that self-organisation of neurons into a 

brain-like structure, and the self-organisation of ants into a swarm 

are similar in many respects [CHIA95].  Memories are believed to 

be written as a stronger coupling among individual, or groups of 

neurons and these couplings are strengthened by neural co-activity 

much in the same way that the pheromonal field is preserved or 

strengthened by coherent frequent ant traffic.

Pareto efficiency is another solution evaluation criterion that takes 

a  global  perspective  [WEIS00]  [PIRJ99]  [PETR95].   Again, 

alternative  mechanisms  could  be  evaluated  according  to  Pareto 

efficiency by comparing the solutions that the mechanisms lead to. 

A solution x is Pareto efficient or Pareto optimal,  if there is no 

other solution x’ such that at least one agent is better off in x’ than 

in x and no agent is worse off in x’ than in x [WEIS00] [PIRJ99] 

[PETR95].  So, Pareto efficiency measures global good, and it does 

not require questionable inter-agent utility comparisons.

Particle  swarm  is  another  system  that  argues  self-organising 

through dynamics of local rules [KENN01].  It argues that when 

individuals  in  a  group  adjust  towards  the  success  of  their 

neighbours, the population converges into an optimal arrangement 

[KENN01].   However,  it  is  investigated  that  the  population 

landscape settles on multitudes of local optima with the result of 

applying a particle swarm algorithm which to some extent is similar 

to evolutionary algorithms [KENN01].  Similarly, social interaction 

results in cultural convergence on patterns of beliefs, and culture 

results in relatively good cognitive performance [KENN01].
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Finally and importantly,  Marvin Minsky [MINS86], describes the 

mind  as  composed  of  separate  “proto-specialists”,  where  each 

would  be  concerned  with  some important  requirement,  goal  or 

instinct and equipped with special sensors and effectors designed 

to suit its specific needs.  Genetically, the swarms of social ants and 

bees  are  really  multi-bodied  individuals  whose  different  organs 

move around freely [MINS86].  However, most animals economise 

by having all their proto-specialists share common sets of organs 

for their interactions with the outer world [MINS86].

In  summary,  the  above  discussed  natural  phenomena  such  as 

morphogenesis,  sociogenesis,  Pareto  efficiency,  embryo 

development  and  society  of  mind  seems  to  have  a  special 

relationship to emergence.  Hence, it could be argued that a basic 

set  of  coordination  rules  that  govern emergence  is  prevalent  in 

both organism and society level.

2.7 Chapter Summary

The concepts in this chapter act as the background for the research 

discussed in rest of the chapters.  It had been a daunting task to 

select the suitable concepts, technologies and framework that suit 

the research objectives.  The overall discussion revolves around the 

necessities of creating artificial intelligence, defined based on the 

AI  Mix,  which  consists  of  Coordination,  Adaptation  and 

Representation.

There  are  several  methodologies  of  implementing  artificial 

intelligence  ranging  from  traditional  cognitive  approaches  to 

distributed approaches.  The concept of software agents falls under 
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distributed approaches and was selected as more suitable for this 

research  because  the  inherent  characteristics  such  as  autonomy, 

adaptability,  communication,  rationality  and  mobility  clearly 

complements the research objectives related to emergence.

The  next  clear  direction  taken  from this  chapter  is  the  use  of 

reinforcement  learning  as  the  learning  methodology  of  this 

research.   The  thesis  is  related to building  an  adaptive  layer  of 

functionality on an innate base of capabilities.  The objective of the 

upper  most  layer  is  to  facilitate  the  agents  with  capabilities  to 

survive in the environment.  Hence, it is clear that the environment 

does  not  act  in  a  supervisory  nature  but  in  a  reinforcement 

manner.  A major portion of this chapter describes the nature of 

reinforcement  learning  which  further  act  as  a  base  for  the 

discussions  in  chapter  4.   A  special  emphasis  was  given  to  the 

concept of frame based knowledge representation because it was 

evaluated as feasible to conduct shared memory models to be used 

across multiple agents and further frames across multiple agents 

could be amalgamated for coordination activities.

The latter part of the chapter describes the coordination models 

that support emergent behaviour based on the research conducted 

on natural systems such as insects, swarms, cell development and 

traffic movements.   The methodologies  of these natural systems 

would be taken as inspiration as well  as  the foundation for the 

AAANTS model realised in the rest of the chapters.
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3.1 Introduction

The behaviour of an animal could be disintegrated into constituent 

composite actions.  These composite actions could be iteratively 

sub-divided  until  reaching  the  elementary  actions  that  are  non-

divisible  into meaningful  sub-actions.   These elementary  actions 

are  collectively  referred  to  as  Atomic  Actions  (AAs)  within  the 

context of this dissertation.  It would be argued that the miracle of 

intelligent behaviour lies in the dynamic and proper coordinated 

execution of AAs in the temporal dimension.

The  survival  of  an  animal  could  be  described  as  executing 

appropriate  behaviour  to  the  ever  changing  environmental 

sensations; some pre-programmed and others learnt.  An animal is 

born with a repertoire of inherent pre-programmed actions which 

could be called as innate which is usually in the basic form of AAs. 

After  birth,  the  innate  AAs  are  amalgamated  and  iteratively 

restructured to create more complex and useful behaviour based 

on  the  supervisions  and  reinforcements  from the  environment. 

This is called as achieving behavioural congruence14.  This process 

had  created  myriad  of  heterogeneous  intelligent  behaviour 

throughout the planet.

A primary objective of this research as mentioned in Chapter 1, 

Section  1.3,  is  to  model  behavioural  congruence  on  artificial 

substance, more suitably using software agent technology.  Further, 

14 As an analogy to behavioural congruence, the resulting relation between the structures of the coupled 

systems  is  known  as  structural  congruence [PAOL99]  and  it  is  to  be  found  particularly  between 

organisms that engage in interactions repeatedly and recursively.
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it  was discussed in chapter 2 that software agents could take an 

individualistic  or  group  approach  to  demonstrate  intelligent 

behaviour.  However, implementing behavioural congruence using 

a cognitive agent model could be considered relatively trivial when 

compared with the use of a group of agents, where each agent is 

responsible  for  a  subset  of  actions  that  should  co-operate  with 

each other to demonstrate emergent behaviour. The complexity in 

behavioural  congruence lies  in the fact  that,  none of  the agents 

have  any  understanding  about  the  end  product  –  the  emergent 

behaviour, though being driven to cooperate.

This research concentrates on group approaches for cooperative 

behaviour among agents where several agents contribute towards 

the global interest.  This chapter presents a methodology based on 

an  inter-disciplinary  coordination  model  that  harnesses  on 

emergence to derive complex behaviour.  Henceforth, the use of 

“AAANTS coordination model” or merely “coordination model” 

refers to the coordination methodology conceptualised within this 

dissertation.

The AAANTS coordination model describes a novel methodology 

based on “implicit cooperation” which is distinct from traditional 

intentional coordination strategies.  The coordination methodology 

based on implicitness was inspired by pheromone based chemical 

information exchange prevalent in insects as discussed in Section 

2.6.  These chemical  messages could be described as distributed 

(disseminated  spatially),  dynamic  (degrading  in  concentration 

conveys different interpretations) and implicit (message placed in 

the environment is not intended for a particular individual but to 
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any party interested and capable of participation).  The ants do not 

intend  to  communicate  with  “specific”  individuals  within  the 

proximity when passing a message, hence the reason to be called 

“implicit”.  The decision taken to stimulate a neighbour is a result 

of adaptive and stochastic nature.  

3.2 AAANTS Coordination Model based on 

Patterns and Emergence

The “AAANTS Coordination  Model”  was  conceptualised  based 

on the inspiration from the natural emergent systems.  The model 

encompasses  aspects  such  as  identifying  sensory  patterns, 

relationship  among  actions  and  sensations  and  team  formation 

among agents for coordination.  The interactions among agents act 

as perturbations and the system achieves congruence with the use 

of reinforcements.  The resulting model consists of heuristics and 

algorithms that could be used to implement an agent system that 

demonstrates emergent behaviour.

3.2.1 The Agent Life-Cycle

A key requirement for the survival of a community, based on the 

insight gained from insects is the necessity of a life-cycle.  A life-

cycle  encompasses  the  creation  and  destruction  of  an  entity 

together  with  different  states  in  between  that  correlates  to  the 

changing functional objectives demanded from that entity.  Based 

on these  fundamentals,  the  concept  of  an AAANTS agent  life-

cycle  was  fused  to  the  AAANTS agent  model  which  could  be 

described as a contribution of this research  The Figure 3.1 depicts 
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the AAANTS agent  life-cycle with the breakdown of states  and 

transitions.

Execute Role

Active

Resource Bottlenecks , 
Reproduction

Inactive

Role Switching

Active

Action Execution

Active

Perception - Sensory

Active

Figure  3.1:  State  transition  related  to the  agent  life-cycle  of  the  AAANTS 
model.

The AAANTS system is programmed to release a limited number 

of agent instances during the birth of a colony.  These agents are 

segregated  into  casts  by  differentiating  the  innate  characteristics 

(attributes and action templates) of each individual.     When an 

agent colony matures, initial participants of each respective caste 

would regenerate new agent instances based on the demands from 

the environment.  Therefore, all agent instances would adhere to a 

life-cycle as depicted in Figure 3.1.

An agent’s life within a caste could be primarily organised into two 

states:  inactive and active.   All  agents  when initially instantiated, 

start in the inactive state which could be called as the starting state 

of  all  agents  (Figure  3.1).   The  agents  in  the  inactive  state  are 

incapable of sensing the environment changes and performing any 

actuations.  The inactive agents transit to the active state with an 

activation  command  from  the  other  active  agents.   This  is 
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analogous  to  the  recruitment  alarms  applied  in  insect  colonies. 

The agents in the active state would execute a series of coordinated 

actions that belong to the repertoire of roles within the respective 

castes.   The agents may periodically  switch back to the inactive 

state  based  on  resource  limitations,  reproductive  needs  of  the 

colony  and  ultimate  termination/elimination  from  the  colony. 

Hence, the inactive state could be described as both the starting 

and ending states of all agent instances within an AAANTS based 

system.

Each agent while being in the active state would be trapped in an 

iterative cycle of sensations and actuations as represented in Figure 

3.1.  The sensations are the primary triggers for actuations and the 

agents adapt as a community based on the reinforcements from 

the environment (explained in detail in sections 3.2.2.1 and 4.5.1). 

During this cycle of activity, an agent may consciously migrate to a 

role switching state that would change the current role of activity. 

The role switching would facilitate the migration of agents to roles 

that  are  of  demand  in  relation  to  the  changing  environmental 

conditions.   However,  the  probability  of  migration  due  to  role 

switching  is  very  minimal  when  compared  to  mundane  action 

execution.

3.2.2 Creating  Behavioural  Concentres  with  Atomic 

Actions and Action Templates

The term Atomic Action (AA) could be defined as an action that 

cannot  be  further  subdivided  into  elementary  actions.   For 

example,  in humans,  the contraction of a homogeneous muscle 
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could  be  thought  of  as  an  AA.   A  given  AA  could  produce 

different effects based on the intensity and the degree of temporal 

progress.  If the minimal duration of an atomic action a is defined 

as t, a.t represents the minimal temporal result of executing action 

a.  However, changes in the temporal dimension of executing the 

same atomic action a, would produce different end results – e.g. 

[a.2t], [a.3t], etc.  Within the boundary of this research, AAs are 

considered  innate  and  could  only  be  enhanced  within  the 

dimensions of time and intensity.

3.2.2.1 The Action Templates

The concept of the Action Template (AT) is introduced herewith 

as the primary method of grouping AAs to define behaviour.  The 

concept of AT could be considered as an original contribution of 

this research in relation to the use with multi-agent systems and 

frame-based knowledge representation.  Though there is common 

use of templates in relation to data,  information and knowledge 

[RUSS95],  there  is  minimal  research  done  in  relation  to  use  of 

templates  for  behaviour.   A  template  could  be  defined  as  a 

generalisation of related instances that determines or serves as a 

pattern  [GAMM95].   Further,  the  concept  of  templates  is  used 

analogously to represent the concept of a class in object-oriented 

programming and design methodologies.  A template could be also 

considered as a description of an aspect  of a task.   In-line with 

these  definitions,  a  definite  collection  of  AAs  executed  in 

concurrency  and  or  sequence  in  relation  to  environmental 

sensations could be called as an AT.
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An  AT  is  analogous  to  a  class  template  in  an  object-oriented 

system.   The  object-oriented  class  template  that  defines  an  AT 

consists  of  necessary  attributes  and  methods  to  implement  the 

capabilities of its constituent AAs.  A class of an AT would not be 

of any use without being instantiated.  An AT could be instantiated 

by several agents, where each agent would represent one or many 

AAs defined in the AT.  For example, the AT depicted in Figure 

3.2  consists  of  four  AAs.   One  possible  arrangement  of 

instantiation is to have four agent instances creating four instances 

of this template where each agent executes their respective AA in 

coordination with other agents.  Another arrangement would be to 

instantiate  two agents  and  two  AT instances  where  each  agent 

takes responsibility to manage two AAs.  However, it should be 

stated that within this research an agent instance is only attached to 

a specified AT, which means an agent is assigned to a definite AT 

type.

Concurrency  is  a  basic  fact  of  nature  for  achieving  complex 

behaviour.  The survival in the environment demands concurrent 

threads of attention to both sensations and actuations.  It should 

be noted that due to the need for concurrency, the AAs within a 

single AT could be contributed by several agents.  

The  methodology  used  by  agents  to  collectively  execute 

synchronised tasks without the knowledge of the overall outcome 

was given special emphasis during the conceptualisation stage of 

this  research.   According  to Keith Decker  et  al [DECK95],  the 

coordination problem of choosing and temporally ordering actions 

is more complex because the agent may only have an incomplete 
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view of the entire task structure of which its actions are a part, the 

task  structure  may  change  dynamically  and  the  agent  may  be 

uncertain about the outcomes of its actions.

The  type  and  sequence  of  AAs  and  their  synchronisation  with 

sensations  for  initiation  and  termination  uniquely  differentiates 

ATs  from  each  other.   Hence,  in  summary,  three  aspects  are 

important to an AT: types of AAs, maximum temporal exposure of 

each AA and the influence of sensations (environmental sensations 

and the temporal progress of other AAs within the same AT could 

also be served as a  sensation)  for  the purpose  of  initiation and 

termination effects of each AA.

a1

a2

a3

a4

s1

s2

s3

s4

e1

e2

e3

e4
Loop back for recursive behaviour

T1 T2 T3

S1

Sensory Templates Sensory Templates Sensory Templates

Action Timers Action Timers Action Timers

S2 S3

Figure 3.2: Action template with a defined sequence of atomic actions

Figure 3.2 depicts an AT defined using four AAs (a1, a2, a3 and 

a4).  Here each AA is constrained with a start and a finish.  The 

symbols s1, s2, s3 and s4 represent the states that trigger the AAs 

into activity and symbols e1,  e2,  e3 and e4 represent  states that 

inhibit the execution of AAs (Figure 3.2).  These states are internal 
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representations  within  the  participating  agents  of  an  AT.  These 

internal  states  relate  to  the  external  sensory  triggers  from  the 

environment.  These external sensory elements are represented in 

Figure  3.2  using  symbols  S1,  S2  and  S3  as  attachments  to  the 

Sensory  Templates.   Hence,  the  Sensory  Templates  that  are 

modelled  based  on the frame-based  technique  is  the knowledge 

representation scheme used in an AT.

Each started AA instantiates a timer that measures the temporal 

progress of that atomic activity.  These timers are represented by 

symbols T1, T2 and T3 in Figure 3.2.  A started action could finish 

due to lapse  of  allocated maximum execution time or  due to a 

trigger from an external sensation.  The maximum allocated time 

of  each  AA would  be  defined  during  the  creation  of  the  AT. 

Further,  the  initiation  of  actions  would  be  triggered  from  the 

temporal  progress  of  other  dependent  actions  within  the  same 

template and or sensory stimulation from the environment.

An important aspect of the AT concept is in the methodology used 

for action synchronisation.  An AT should be first instantiated to 

facilitate  the  defined  behaviour.   Subsequent  to  the  initial 

instantiation, the first action in the sequence would be activated. 

However, there could be situations where several AAs that belong 

to an AT are activated simultaneously at the initiation based on the 

stochastic nature of the action selection mechanism.  An ongoing 

action would publish the temporal progress within the respective 

domain,  and  other  participants  could  use  this  information  for 

coordinated participation.  Therefore, both the temporal progress 

of  the  other  actions  and  the  sensory  information  from  the 
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environment  is  used for  action coordination.   The coordination 

sequence  is  improved  over  a  period  of  time  due  to  the 

reinforcements received after executing an instance of a template.

The  AAs  could  be  described  as  innate  to  an  intelligent  entity. 

However, the ATs could be formed both in terms of innateness 

and adaptations.  The innate ATs would be ready to use though 

with further fine-tuning through environmental  supervisions and 

or reinforcements.  The adaptive ATs would be created through a 

stochastic process where innate AAs are randomly selected to form 

novel  behavioural  structures.   The  exploitation,  exploration  and 

credit assignment methodologies of the AAANTS learning model 

is described in section 4.3 and 4.5.   Further, ATs would be able to 

form hierarchical or lateral bonds with each other, again through a 

stochastic process to create complex behavioural outcomes.  The 

AAANTS  model  conceptualises  both  flavours  of  ATs  but  the 

experiments  are  focussed  on  the  innate  ATs  that  are  refined 

through reinforcements.

A  similar  approach  is  taken  in  leaning  systems  like  ALECSYS 

[COLO93],  where  the  learning  “brain”  of  an  agent  could  be 

designed  as  the  composition  of  many  learning  behavioural 

modules.   The modules are called as  basic behavioural  modules 

which are connected to sensory and motor routines that learn from 

external stimuli.  The behavioural modules of ALECSYS could be 

made analogous in concept to ATs discussed above.  Simply, AAs 

are like the bricks and templates are like different wall types of a 

building, where different combinations of walls could be used to 

create buildings of diverse architectural complexities.
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The concept of the AT would also be similar in some extent to 

behavioural  assemblages [BALC97].  According to Tucker Balch 

[BALC97],  groups  of  behaviours  are  referred  to  as  behavioural 

assemblages.  One way that behavioural assemblages may be used 

in solving complex tasks is to develop an assemblage for each sub-

task and to execute the assemblages in an appropriate sequence. 

The resulting task-solving strategy could be represented as a Finite 

State  Automaton  (FSA)  and  the  technique  is  referred  to  as 

temporal sequencing.

The  use  of  ATs  consisting  of  multiple  AAs  in  modelling 

coordinated behaviour could be further explained with the use of a 

robotic arm movement example.  Figure 3.3 depicts a model arm 

with 3 joints – shoulder, elbow and wrist which is analogous to an 

upper limb of a human.  Each of the joints J1, J2 and J3 is moved 

by AAs a1, a2 and a3 respectively as depicted in Figure 3.3.  The 

execution of each atomic action in different temporal values would 

result in the respective component of the arm changing the angle 

of movement (Q1, Q2 and Q3).

Q1

Q2

Q3J1

J2

J3

Fixed point

Elbow

Wrist

Shoulder

a1
a2

a3

Figure 3.3: Robotic Arm Model with 3 degrees of Freedom – movement of a 
single plane
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The AT responsible for the movement could be defined by actions 

a1, a2 and a3 that initially execute in sequence in order to change 

the respective  angle to perform myriad of  tasks.   The temporal 

execution  of  these  AAs  could  be  easily  understood  when 

comparing with the AT represented in Figure 3.2.

3.2.2.2 Behavioural Concentres

The groups of actions in an AT that consist of AAs are the basis 

for building complex behaviour.  A group of AAs within an AT 

(depicted in figure 3.2) that are executed in a coordinated manner 

may contribute in behaviour, fully or partially to a Behavioural Act 

(BA).  Hence, one or many ATs may represent a BA.  The concept 

of a BA is similar to the definition found in myrmecology for a 

collection of elementary actuations [HOLL90].   For example,  in 

Figure 3.2, the depicted AT with actions a1, a2, a3 and a4 could 

represent  a  BA,  or  several  ATs  that  are  coordinated  with  each 

other could also represent a BA.  Further, a collection of closely 

linked  BAs could be  defined  as  a  Role  where  a  Task  could be 

differentiated as a similar sequence of BAs that are coordinated.
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Figure 3.4: Ethogram for the transition of behavioural actions across different 
roles

A popular method of depicting a behavioural repertory is by the 

use  of  an  ethogram,  which  incorporates  repertory  of  a  caste, 

transition probabilities of acts and the time distributions spent on 

each act [HOLL90].  The Figure 3.4 represents an ethogram that 

depicts  the  roles  within  a  group  of  entities  and  the  states  and 

actions that facilitate the transition among roles. It should be noted 

that some actions (actions a5, a11 & a17 in the ethogram – Figure 

3.4) enable a role to be navigated to states of another role.

Roles could also be described in terms of cohesion and coupling of 

ATs when multiple ATs contribute to a role.  There exists high 

cohesion among the AAs that belong to an AT.  The ATs that 

belong to a specific role should have higher coupling within them 

than with others external to the role.
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a1 a2 a3 a4 a5 a6 a7 a8

Actuation Layer

a1 a3 a6 a2 a7 a4 a8 a5 a3

Coordination Layer

Action Template (T1) Action Template (T2) Action Template (T3)

B1= {T1, T2} B2 = {T1, T3} B3 = {T3, T2}

B4= {B1, B2} B5= {B2, B3}

B6= {B4, B5}

Action Templates 
(Innate )

Atomic Actions 
(Innate )

Behaviour 
Concentre 
Hierarchy (Learnt)

Figure  3.5:  Conceptual  action  breakdown  structure  of  the  AAANTS 
coordination model.

The  Action  Breakdown Structure  (ABS)  depicted  in  Figure  3.5 

would be a good approach to explain the rest of the behavioural 

complexity  of  the  AAANTS  coordination  model.   The  ABS 

conceptualised  within  the  AAANTS  model  is  an  original 

contribution of this research which clearly aligns in realising the 

objective  of demonstrating congruent  behaviour as a result  of a 

static innate layer  refined through a reinforced adaptive layer  of 

behaviour.  Hence, the behavioural structure the ABS is segmented 

into two primary layers of functionality  based on the innateness 

and adaptability.  The actuation layer represents the raw AAs that 

are  innate  in  nature  and less  complex.   As examples,  the  basic 

contraction of muscles, release of enzymes and hormones, change 

of chemical composition in animals are analogies to these types of 

actions.   Hence,  AAs  are  the  building  blocks  of  any  complex 

behaviour.
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The ATs represented within the coordination layer in Figure 3.5 

are  responsible  for  grouping  AAs  into  elementary  chunks  of 

coordinated  behaviour.   However,  these  templates  would  be 

useless  without  being  coordinated  with  other  ATs  to  perform 

more  complicated  roles.   The  AAANTS  model  introduces  the 

concept of Behavioural Concentres (BC) [RANA05] as the enabler 

for coordination among the ATs.  The BCs could be described as 

high-level ATs that link up other constituent ATs to form more 

complex behavioural assemblages.  These BCs are created, adjusted 

and destroyed based on the reinforcements from the environment.

It is assumed that the innate repertoire of AAs should suffice the 

expected  behaviour  of  an  individual.   However,  absence  of  a 

particular behaviour in an individual does not imply that relevant 

AAs are missing.  Many of us possess the atomic actuations in the 

upper limbs to become an artist, though few of us are capable of 

such coordinated behaviour.  Further, many of us have the innate 

AAs to play a violin, though few of us could.  Therefore, the BCs 

and ATs are important in harnessing the capabilities of AAs.  In 

most in-born talents such as art, music and athletics are mostly due 

to the inherited ATs.  Hence the assumption is that some types of 

special  innate  ATs  are  required  to  full-fill  some  higher-level 

complex behaviour.  However, even with inherited ATs, without 

proper environmental adaptations to build up BCs could be called 

as a “waste of talent” by most of us.
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3.3 Heuristics for Emergence 

The  subsequent  sections  would  use  the  pheromone  usage  of 

insects to formulate six heuristics for the AAANTS coordination 

model.  These heuristics would introduce the emergent capabilities 

to  the  already  described  AAANTS coordination  model.   These 

heuristics are inspired from the capabilities of natural insect world 

discussed in Section 2.6.

3.3.1 Heuristic 1: Locality of actuations and sensations – 

The view-point of the overall active space is limited 

and restricted.

In  an  ant  community,  pheromones  are  used  for  local 

communication within a restricted spatial and temporal dimension. 

This  aspect  is  instrumental  in  facilitating  the distributed control 

nature within insect colonies.

Locality15 is  based on spatial  dimensions  for  most  animals,  with 

examples  ranging  from  insects  and  embryonic  cells  to  swarms. 

However,  limited  locality  could  also  be  gained  by  establishing 

channels of communications even across spatially distant entities. 

Hence,  in  respect  to  software  agents,  locality  is  defined  by  the 

limited communication interactions among a group of agents and 

restricted information in the sensory signals from the environment. 

This  heuristic  explains  that  agents  tend  to  synchronise  and 

associate  with  others  that  are  local  to  their  current  existence. 

15 Locality could be explained by Euclidean distance among the sensory generators and the receptors.  The intensity of 

the sensation would be primarily based on the Euclidean distance between the point in space pheromones are released 

and the point in space of the sensory receptors.
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Therefore, global situation is not perceived by any agent and there 

is no central authority that knows about it either.

3.3.2 Heuristic  2:  The  effect  of  sensations  may  differ 

based on the context of behaviour 

An ant would execute a series of actions in performing a task or 

role.  The transition from one action to another would be based on 

a trigger from a sensation.  The activity switch is a product of the 

current  action  and  the  sensation.   Hence,  a  homogeneous 

sensation may trigger several subsequent actions depending on the 

present action. 

The  effect  of  sensations  could  be  gauged  by  the  immediate 

actuations.   However,  a pattern of sensation may have different 

effects based on the progress within a role.  This could be called as 

the context or a situation that is related to a certain aspect of an 

on-going task.  This aspect was described earlier using the concept 

of stigmergy in section 2.6.  Within that section, an ideal example 

was described (the effects of oleic acid on different castes) where a 

single  pheromone  may convey  different  messages  based  on the 

current  activity  of  ants  within  a  given  proximity.   Therefore, 

sensations and situations should be matched before the actuations. 
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Figure 3.6: Situation identification based on action type, strength and duration.

A situation could be described using a series of states.  The same 

sequence or pattern of states that occur iteratively represents the 

same situation.  Hence, identifying a situation correctly would be 

very  useful  in  activating  the  appropriate  behaviour  for  that 

situation.  Figure 3.6 depicts a situation related to the execution of 

actions  a1,  a2,  a3  and a4  within  a  temporal  frame of  16  units. 

When a situation is  identified,  the agents  should instantiate  and 

trigger the most appropriate AT.  Therefore,  the most primitive 

level of control to handle a situation should be embedded in an 

AT.  The formula of the Situation Index for quantifying a situation 

as represented in Figure 3.6 is discussed in section 4.6.3.

The  AAs  in  an  AT  would  get  activated  in  sequence  or  in 

concurrency as described in section 3.2.2.  The participating agents 

of  an  AT  would  refine  the  behaviour  in  line  with  the  overall 

outcome for a specific situation based on the reinforcements from 

the  environment.    The  agents  may  explore  different  sequence 

patterns of execution in a stochastic manner, which would lead to 

some AAs conflicting with each other in achieving the final goal. 

These  conflicts  are  neutralised by the credit  assignment  process 

(section  4.5)  that  eliminates  unfit  behavioural  patterns  of 

participating agent instances.

3.3.3 Heuristic 3: Sensations are organised into patterns

The next objective is to identify the methodologies used to convey 

myriad  of  sensory  patterns  with  the  use  of  a  handful  of 
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pheromones.  One approach to achieve this objective is to create a 

message using a pattern of basic chemical constituents.   This is 

analogous  to  creating  meaningful  bytes  of  information  using  a 

collection of bits where a byte is identified as a unique pattern of 

bits.   According  to  Bert  Holldobler  et  al and  Steven  Johnson 

[HOLL90]  [JOHN02],  it  is  possible  to  create  a  compound 

message by using a graded sequence of concentrations of the same 

substance.   Hence,  information  could  be  exchanged  using  a 

collection of elementary sensations organised into a pattern.  A 

pattern of information could be created using a single Pheromone 

with graded concentrations,  using multiple Pheromones or with 

the use of a combination of these two strategies. 

The sensations are temporally discretised and could be organised 

into patterns.  Further, the patterns could be based on single and 

multimode  sensory  modalities  mixed  through  the  temporal 

dimension.   Another  dimension  to  sensory  patterns  could  be 

added with the use of temporal relatedness of temporally adjacent 

sensory frames.  The agents could use the identified patterns with 

respect to the reinforcements received from the environment to 

adjust execution variables of AA within and across AT instances. 

The  pattern  identification  and  quantification  of  sensations  is 

further described in section 3.4.  The pattern identification is done 

through a technique called as fuzzy clustering where the closest 

previously  recognised  pattern is  taken as a  match.   Hence,  the 

fuzzy clustering techniques assist to resolve uncertainty in sensory 

identification.
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Figure 3.7 shows two patterns of sensations created from a single 

chemical  type  using  different  concentrations.  Each  circle 

represents a patch of pheromone emission which is spatially apart 

from each other for an ant to differentiate the sensation.  This fact 

is used by Alfred Wurr [WURR03] to explain the use of stigmergic 

markers.  There are two types of markers: homogeneous markers 

convey  simple  patterns  to  repel  from  local  maxima  and 

heterogeneous  markers  are  dropped  in  sequence  to  encode  a 

pattern [WURR03]. 

10% 20% 30% 40% 50% 60%

Pattern 1 of Pheromone X

Sensation X’

10% 20%30% 40% 50%60%

Pattern 2 of Pheromone X

Sensation X’’

Figure 3.7:  Creating sensory patterns using a single pheromone by discrete 
distribution of concentrations16.

A  single  substance  has  to  be  either  temporally  or  spatially 

discretised  to  convey  a  pattern  of  information.   Temporal 

discretisation  is  very  common  even  in  human  communication 

where  a  message  is  broken-up  into  sentences,  words  and 

phonemes.   Phonemes are temporally sequenced by the initiator 

and  perceived  by  the  receiver  in  the  same  sequence.   The 

perceptive organs together with the cognitive aspects are able to 

assemble them into meaningful messages.

16 The concentration listed is the % above threshold concentration at which the receiving animal responds.
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Similarly, insects smear pheromones along the passages they travel 

and  create  patterns  of  messages  in  the  spatial  dimension.   The 

messages also have a temporal dimension based on the period of 

retention  of  message  attributes  within  a  given  medium  of 

transport.  With respect to pheromones, the concentration reduces 

at  a  rate  due  to  evaporation  based  on  the  environmental 

conditions.   The  varying  strength  of  pheromones  due  to 

evaporation with time may offer special intuition to foraging ants 

such that a pheromone path with a positive or negative gradient 

may lead to a food source [HOLL90].

The strategy of using multiple pheromones for communication is 

much more intuitive  than using a  single  pheromone.  Figure 3.8 

shows that a pattern consists of a number of chemicals (in ants 

usually  secreted from several  glands)  arranged either  spatially  or 

temporally.  The distinct bits of chemical sensations are collected 

to form a sensory pattern with the help of perceptive apparatus. 

The advantage of using multiple chemicals is that if the receiver 

has  the  capability  to sense  different  chemicals  concurrently,  the 

patterns need not spread across spatial and temporal dimensions. 

For example, an ant may smear several types of chemicals in the 

same position to convey a specific signal and the receiver arriving 

at  the location may sense all  these chemicals  concurrently  using 

several sensory apparatus to decipher the signal.
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Figure 3.8: Sensory patterns created from several pheromones. Three chemical 
types grouped into clusters of three.

According to Bert Holldobler  et al [HOLL90], most alarm signals 

are  multi-component,  typically  consisting  of  two  or  more 

pheromones, which often serve simultaneously to alert, attract, and 

evoke aggression.  The situation explained in figure 3.8 is called as 

multimodal  systems  [HOLL90],  which  transmit  signals  through 

more  than one  sensory  modality.   Multimodal  systems in  some 

insect groups may even use acoustical signals to complement the 

effect of pheromones [HOLL90]. 

3.3.4 Heuristic 4: High rate of interactions would lead to 

more refined and precise patterns of behaviour

It  is  identified  that  ants  use  “rules  of  thumb” [HOLL90]  or  in 

other terms heuristics to select the appropriate action based on the 

local stimuli.  An action selected by a heuristic has a probability of 

correctness attached to it or is limited in precision.  How does the 

coordinated and emergent  outcome of probabilistic  actions with 

limited precision give way to such complex and precise behaviour 

of building nests, taking care of the brood, foraging and invasion 

of  territory?   According  to  Bert  Holldobler  et  al and  Deborah 

Gordan  [HOLL90]  [GORD99],  it  seems  to  be  the  result  of 

combining  heuristics  with  the  high  rate  of  interaction  among 

individuals  due  to  egalitarian  nature  of  insect  colonies.   When 

aligning  this  theory  to  the  coordination  model  of  AAANTS,  it 

could  be  assumed  that  low  precision  AAs  when  collectively 
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coordinated  and  refined  through  high  rate  of  rejections  and 

acceptance  results  in  complex  and precise  patterns  of  emergent 

behaviour. 

The BCs are constructed based on the reinforcements from the 

environment.   The  concept  of  BCs  is  the  key  to  achieve 

behavioural congruence.  When the environmental reinforcements 

change, so should the arrangement of the concentres.  This may be 

analogous to the fact that more refined you get, the more you train 

yourself.   Though,  AAs  are  less  precise,  a  bundle  of  actions 

reinforced frequently  would lead to refined behaviour.   Further, 

the high rate of interactions has an effect on the congruence of 

behaviour.  The BCs would get reshuffled to a new arrangement as 

the environmental situations change.

3.3.5 Heuristic  5:  The  recent  interactions  of  successful 

agents could be used to evaluate the most needed 

role to the community.

A  deterministic  model  was  discussed  by  Deborah  Gordan 

[GORD99] to investigate the task allocation of ants.  At a given 

time, ants in a colony are totally dedicated to executing their most 

valued task as per the local perceptions.  As time progresses, ants 

either  continue the current  task or switch over  to another  task 

based on the relative success  of other  perceived tasks with the 

current preference. The intensity of task switch-over improves as 

the colony size increases due to accelerated interaction rate among 

individuals  [GORD99].   Consequently,  larger  colony  sizes  are 

more  receptive  to  environment  changes,  since  high  interaction 
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rates  spread the emphasis  of  successful  tasks across the colony 

and rapidly adapt to new situations.

It shouldn’t be misinterpreted that the interaction of a successful 

ant would instantly influence an unsuccessful  ant.  According to 

Deborah Gordan [GORD99], the signal is neither in the contact 

nor in the chemical information exchanged, but the signal is in the 

pattern  of  contact  and  especially  in  the  recent  history  of 

encounters.   Similarly,  in  the AAANTS coordination  model  an 

agent would continue to execute a particular task until the recent 

history  of interaction patterns advise to switch over  to another 

successful task.  

The  overall  behaviour  of  a  colony  is  spread  across  castes  and 

roles.   A group of ants would belong to a particular  caste and 

would be responsible  for  a repertoire of roles within the caste. 

However, within a given period of time an ant would concurrently 

execute several roles though a few may be more important to the 

survival  of  the  colony  than others.   Hence,  a  group of  agents 

within a given caste would switch roles  based on the changing 

importance to the colony.

3.3.6 Heuristic 6: An agent could become altruistic based 

on kin relationships

The  last  aspect  to  investigate  is  related  to  the  task  distribution 

within a group based on the kinship among the participants.  Kin 

recognition  is  an  important  aspect  of  any  insect  colony  for 

collective behaviour.  It is identified that each individual in an ant 
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colony  possess  phenotype17 matching  details  of  kin  such  as  a 

recognition label and a sensory template specifying a learned set of 

data likely to be borne by kin [GORD99].  Here a label is like an 

identifier assigned to a group of individuals preferably generated 

from offspring of a single queen.  Ants bathe in special chemicals 

either generated from the queen or from specific individuals of the 

colony, in order to setup this recognition label across the colony 

[HOLL90].  This concept could be further enhanced to a model 

where individuals in a colony are categorised to groups based on 

roles  and identification  assigned  to  each  role.   Individuals  then 

could maintain multiple identification labels and sensory templates 

related to each of these groups. This would enable individuals to 

perform heterogeneous tasks as requirements arise in a colony.

The  trigger  for  any  Behavioural  Act  (BA)  is  a  sensation.   The 

sensation could be generated from colony members as well as from 

sensory sources in the environment.  If an ant could differentiate 

colony members based on kinship, then another dimension could 

be added to the behavioural congruence mechanism.  As depicted 

in figure 3.9, an individual may execute different BAs for the same 

sensory template based on kin differentiation.  The kin is uniquely 

identified by a group identifier and members affect each other by 

communicating  through  pheromones.  The  group  identifier  is 

piggybacked on the original message of the pheromone, which the 

17  The collection of genes in an organism is called its genotype.  Every organism begins as a single cell 

containing such a genotype [STAN95].  The organism’s phenotype is the collection of properties or 

attributes it exhibits during development [STAN95].
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receiving  party  intercept  and  aligns  with  the  most  suitable 

behavioural acts.

Group ID
{001}

Template A{001 } Template B{001 } Template C{001} Template D {001 }

Behaviour A{001} Behaviour B{001} Behaviour C{001} Behaviour D{001}

Group ID
{002}

Template A{002 } Template B{002 } Template C{002} Template D {002 }

Behaviour A{002} Behaviour B{002} Behaviour C{002} Behaviour D{002}

Figure 3.9: Maintaining sensory templates for coordinating activities with Kin. 

Emergence would require altruism from participants of a colony of 

agents.  Each agent should be committed to the roles rather than 

concentrating on a selfish agenda.  No sooner the agents deviate 

from the colony life to concentrate on individual well-being, the 

whole concept of emergence falls apart.  Therefore, the agents are 

bonded together  with  the use  of  kinship  towards  each other  in 

their respective castes.

The  six  heuristics  discussed  above  is  responsible  for  emergent 

behaviour in a typical ant colony.  These heuristics were selected as 

the  foundation  for  emergent  behaviour  within  the  AAANTS 

coordination model.
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3.4 Organising Sensations

The sensations in the environment should reach the responsible 

sensory receptors to enable the perception of that sensation.  For 

example,  visible  light  reflected  from an object  should reach the 

human eye to initiate the visual recognition process.  The receptor 

process  consists  of  perception  and  cognition  functions.   The 

perception  activity  translates  the  physical  sensation  to  a  neural 

signal  and it  is  the  cognitive  process  that  gives  meaning to  the 

signal.   In  another  sense,  any  pattern  of  cerebral  activation  in 

response  to  an  external  stimulus  could  be  identified  as  a 

representation  of  the  stimulus,  which  may  encompass  both 

activities  of  perception  and  cognition  [MARA00].   The  word 

“representation”  is  usually  reserved  for  pattern  of  activation 

characteristic of the particular external stimulus or some property 

of the stimulus [MARA00].

3.4.1 Fuzzy Clustering for Identifying Sensory Patterns

There are several techniques mostly based on supervised learning 

being used by the research community extensively for the purpose 

of pattern recognition [RUSS95].   For example,  neural networks 

and Bayesian classifiers are two popular techniques that fall into 

supervised pattern recognition nature which mostly requires a set 

of  patterns  that  have  already  being  classified.   Due  to  the 

unsupervised  and  reinforced  nature  of  the  AAANTS  research, 

methods  based  on clustering analysis  were  selected as  the most 

appropriate.  Further, the AAANTS model suggests a relationship 

between frame-based representations and clustering algorithms.
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Clustering  analysis  is  used  for  many  aspects  of  research  and 

applications  such  as  pattern  recognition,  data  mining,  image 

analysis,  artificial  learning  and  bioinformatics  [RUSS95]. 

Clustering analysis is a process of organising objects into groups, 

where the members of a group have something similar based on 

one  or  more  attributes  [KANA03a]  [NASC00].   Hence,  there 

should be some level of dissimilarity among objects that belong to 

different clusters.  Therefore, the goal of clustering is to determine 

the intrinsic grouping in a set of raw data elements.

There are many algorithms for clustering analysis such as K-means, 

Fuzzy  C-Means  (FCM),  Hierarchical  and  Gaussian  [KANA03a] 

[NASC00].  The FCM algorithm was selected as the ideal candidate 

for  the clustering capabilities  of the AAANTS model because it 

allows  one  piece  of  data  to  belong  to  two  or  more  clusters 

[NASC00] [WANG03].  The segmentation of sensory information 

into overlapping clusters facilitates the creation of heterogeneous 

patterns  based  on  dimension  of  analysis,  which  is  considered 

important to this research.  When using FCM, each piece of data is 

assigned a value to describe the relatedness to each group where a 

group is represented by a clustering centre.  Further, the research 

argues  a  relationship  among  clustering  centres  and  hubs.   A 

detailed description of the FCM algorithm is found in [WANG03] 

[NASC00] [ABON02], of which a summary is given below using 

the  formulas  3.1  to  3.6.   The  objective  of  the  FCM clustering 

technique is to optimise the objective function (3.1).
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Let x={x1, x2, .., xn} represent the collection of data elements to be 

clustered.  x would be classified to “c” clusters by minimising the 

objective function (3.1).  Uij is the membership degree of data Xi to 

a  fuzzy  cluster  set  vj,  where  v={v1,  v2,  …,vc}  are  the  cluster 

centres.  U = (Uij) N*C is a fuzzy partition matrix, in which each Uij 

indicates the degree of membership of each data element in the 

dataset to the cluster j.   The |xi – vj| is the Euclidean distance 

between xi and vj.  The fuzziness index is represented by parameter 

m, which could be used to control the fuzziness of membership 

data elements.

Step 1: Initialise the membership matrix with random values while 

satisfying conditions (3.2) (3.3).  The number of clustering centres 

needs  to  be  decided  at  this  point  since  there  would  be  similar 

number of columns in the matrix.

Step  2: Calculate  the  clustering  centre  using  the  following 

equation.  (where v: clustering centres; u: degree of membership; x: data elements; m: any 

real number greater than 1.)
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Step  3: Calculate  the  new  Euclidean  distance  (d)  between  data 

elements and clustering centres. 
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(Where d: Euclidean distance; N: number of elements in the dataset; C; number of clustering 

centres)
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Step 4: Update the Fuzzy partition matrix U: If ).(0 jiij vxd ≠∴≠
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Step 5: Stop when the termination criterion is reached else return 

back  to  step  2.   The  maximum number  of  iterations,  checking 

against  a  tolerance  value or  difference  among previous  iteration 

could be used as suitable termination criterion.

The selection of good clustering centres and the correct number of 

clusters that represent the overall dataset is an important factor for 

the  success  of  the  clustering  process.   It  is  described  that  data 

could be clustered using an iterative version of the FCM algorithm, 

but the drawback of the FCM algorithm is that it is very sensitive 

to cluster centre initialisation because the search is based on a hill 

climbing heuristic [KANA03b].  

Ant Colony Optimisation algorithms [KANA03a] [KANA03b] are 

one of  the most successful  methods that could overcome FCM 

algorithm’s  sensitivity  to  the  initial  values  of  clustering  centres. 

The  clustering  centres  filtered  through  Ant  Optimisation 

Algorithms could be refined using the FCM algorithms.  However, 

the AAANTS model did not pursue this path in order to keep the 

FCM  algorithm  less  complicated  to  suit  the  generic  pattern 

Page 97 of 352



Chapter 3- Behavioural Congruence through Implicit Communication

recognition needs of this research.  However, this could be taken 

as a method of refining the overall research outcome in the future.

3.4.2 Segmenting Sensations Temporally

A sensory signal would eventually become a continuous potential 

fluctuation in the nervous system where the raw sensation is based 

on activation and inhibition of nerve endings.  A given mode of 

sensation is not performed by a single sensory cell, but by myriad 

of sensory receptors.  For example, in mammals the eye has cells 

that are receptive to light, tongue and nose have cells receptive to 

chemicals  (similar receptors in antennae of insects)  and the skin 

has cells to sense touch.

Perception

<time>

Cognition

Sensory 
Receptors Signal Pulses

Temporal Sensory 
Frame creation

Cognition based 
on patterns

Remembered 
patterns

Pattern matching

Figure 3.10: Generating sensory patterns using elementary signal pulses

Signals from a collection of receptive cells in a given region of a 

sensory apparatus generate a rhythmic array of inhibitions targeted 

towards the cognitive elements.  Figure 3.10 shows the steps taken 

in  the  AAANTS model  to  transform  sensory  signals  from the 

environment to meaningful sensory patterns using perception and 
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cognition  processes.   The  stimulation  of  the  sensory  receptors 

generates  a  repetitive  array  of  signal  pulses  that  results  in 

formulating a Temporal  Sensory Frame (TSF) in the perception 

layer.   The  TSF  is  processed  using  Clustering  Algorithms  to 

generate a cognitive pattern.  Different types of cognitive patterns 

could be generated based on the input values of the TSF.  The 

responsibility  of  the  cognitive  process  is  to  perform  a  pattern 

matching activity to identify the input pattern with respect to the 

already  remembered  patterns.   Hence,  the  cognitive  elements 

should be able to amalgamate the concurrent rhythmic pulses to a 

known pattern of sensation.   If a processed cognitive pattern is 

non-existent in the repository, it is added to the list of remembered 

patterns for future references.

The  perceptive  process  requires  inputs  from  a  collection  of 

receptors to perceive a meaningful model of the external stimulus. 

For an example inputs from multiple receptors in the human eye is 

required to capture a complete picture of an external image.  The 

AAANTS  model  uses  formula  3.7  to  calculate  the  overall 

perceptive value (called as the Receptor Sensory Grade (RSG)) of a 

single sensory receptor in a given modality.    With respect to the 

formula 3.7, SI represents the quantification of the sensation felt 

by the sensory receptor, ST is the minimum strength of a sensation 

that  could  trigger  a  receptor  and  SG is  the  average  difference 

between two consecutive granular values.

)7.3(.
)(

)()( −−=
SG
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(Where SI: Sensory Intensity; ST: Sensory Threshold; SG: Sensory Granularity)
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The input  from a single  receptor  alone  would not  be  useful  to 

perceive  a  meaningful  outcome  from  a  sensation.   Hence,  a 

collection of values from all receptors of a modality would provide 

sufficient inputs to the perception and cognition processes.  This 

summation  of  RSGs  collected  from  all  receptors  of  a  sensory 

mode at a point in time is called as a Temporal  Sensory Frame 

(TSF).  For example stimulations from all the light sensory cells in 

a mammalian eye at a point in time would represent a TSF for the 

visual  sensory  mode.   There  would  be  an  abundance  of  TSF 

instances created within a given period of time from each mode of 

sensation.   The  success  of  an  artificial  learning  model  would 

depend on building meaningful relationships among RSGs within 

and across TSFs of inter and intra-modalities of sensations.

A  TSF  is  defined  as  a  2-Dimensional  (2D)  array  consisting  of 

RSGs of a single modality of sensation.  The elementary sensory 

values  are  called  as  “sensolets”  for  easy  reference  within  this 

discussion.  The sensolets are spatially arranged in a 2D array to 

produce  a  TSF.   When applying  the  FCM algorithm,  clustering 

centres are placed in a random manner across the 2D array of a 

TSF.  The number of clustering centres for a frame may be fixed 

based on the mode of sensation.  The degree of membership of 

each sensolet with all clustering centres is calculated initially ( ijU ). 

However,  spatial  arrangement  and  the  average  value  of  the 

clustering  centres  have  to  be  adjusted  to  overcome  initial 

drawbacks in selecting the clustering centres.

The relatedness of clustering centres would result in a pattern that 

is unique to a certain instance of a sensation.  The formula 3.8 is 

Page 100 of 352



Chapter 3- Behavioural Congruence through Implicit Communication

used to quantify the relationship of the members in one cluster 

with the rest of the clusters in a given TSF.  The RSG formula 

(3.7) is used to calculate the value of each data element ( ix ).  The 

value of  jRC  (Relationship  Coefficient  (RC)  of  each clustering 

centre)  would  give  the  summation  of  values  based  on  the 

relatedness of each element in a given cluster ( ix ) with the rest of 

the  clustering  centres  ( jC )  other  than  the  one  it  belongs  to. 

Hence,  jRC  would represent a quantification of relatedness of a 

given cluster with the rest in a given TSF.
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(Where ji Cx ∈ ; U: degree of membership; x: data elements; N: number of elements in the 

dataset; C; number of clustering centres)

This formula summarise the attraction of data elements of a certain 

clustering centre, to the rest of the clustering centres of a single 

TSF.

3.4.3 The Effect of Hubs

A complex  system is  usually  constituted  of  many elements  that 

interact  with  each  other  and  the  global  behaviour  arises  from 

interactions  of  the  constituent  elements.  The  complexity  of  the 

system is proportional to the number of elements, the number of 

element  interactions  and  the  complexities  of  the  elements 

[GARC01] [BABA01].  A complex system is also called emergent 

because  the  macro system possess  properties  that  are  absent  in 

micro  elements.  These  macro  properties  emerge  from  the 

interactions  of  the  constituents  of  the  system  [GARC01] 
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[BABA01].  However, it could be argued that complexity is relative 

and it is difficult to define an absolute reference point.  

A complex network is composed of nodes, of which, some could 

be called as Hubs.  The concentrated and highly connected nodes 

of a complex network are called as Hubs [BARA02].  The Hubs 

seem to prevail in many types of complex networks ranging from 

the  nervous  systems  of  animals  to  dynamic  topology  of  the 

Internet  [BARA02].   It  is  identified  that  random node  removal 

from a network with hubs, initially seems to be unaffected until 

reaching a critical threshold, after which the network disintegrate 

into isolated segments [BARA02] [SOLE01].

The  neural  groups  in  the  nervous  system  perform  a  similar 

function  to  that  of  Hubs.   It  is  found  that  neural  groups  are 

collections of 50 to 10000 neurons, relatively close to each other 

which  are  formed during  development  and prior  to experience, 

whose  intra-connections  allow  them  to  respond  to  particular 

patterns  of  synaptic  activity  [STAN95].   The  neural  group 

arrangement  occurs  outside the influence  of  the genetic  control 

processes;  hence,  no  two  individual  animals  are  likely  to  have 

identical neural connectivity, not even identical twins with identical 

genetic  material  [STAN95].   A  secondary  repertoire  forms as  a 

result  of  this  postnatal  interaction  with  the  environment  via 

synaptic  modifications  both  within  and  between  neural  groups 

[STAN95].

The objective of using the concept of hubs is to derive a formula 

that describes the uniqueness of a TSF.  This could be achieved in 
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two steps.  Firstly, the values of the RCs (formula 3.8) of clustering 

centres could be used as the measurement for selecting hubs.  The 

high coefficient  value indicates  the  high degree  of  attraction of 

member data elements of rest  of  the clusters.   The Figure 3.11 

depicts a scenario of a TSF with three clustering centres related to 

six data elements.  Among them, C1 and C2 show high RC values 

and could be considered as hubs for the discussed data set.
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Figure 3.11: Creating a unique pattern using relationships among hubs

The second step is to calculate the Hub Cohesiveness with respect 

to  the  relatedness  of  selected  hubs with each other.   A unique 

pattern called the Hub Cohesiveness Frame (HCF) (figure 3.11 – 

(4)) which is a matrix that could be derived using this technique. 

Figure  3.11  (1)  shows  three  clusters  with  overlapping  data 

elements.   It  is  the  overlapping  data  elements  that  contribute 

towards  calculating  the  HCF.   The  cohesiveness  among  two 

clusters is bi-directional (figure 3.11 – (2)).  For example, from all 

data elements (figure 3.11 – (3)), X1 and X2 belongs to Centranoid 

C1 based on the fuzzy membership values.  

The Cx to Cy Cohesiveness Index (CI) is calculated as follows:
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(Where N is the number of elements that belongs to xC , u: degree of membership; x: data 

elements)

However, CI is a bi-directional index.  Therefore, the values of CI 

(C1 – C2) and CI (C2 – C1) may be different to each other, which is 

obvious  from  data  set  depicted  in  figure  3.10  –  (3).   Similar 

sensations  should  represent  TSFs  with  approximately  similar 

pattern values.  The HCF data matrix is recorded and compared 

with the HCF of  new sensations  to identify  relationships.   The 

HCF matrix comparison is done based on value comparisons of 

related data elements within defined thresholds.  The agents should 

attach  these  frames  for  action  synchronisation  as  discussed  in 

section 3.2.2.

The above discussed formulas (3.7, 3.8 and 3.9) was instrumental 

in identifying less complicated sensations (e.g. direction and angle) 

used  in  the  grid-world  foraging  and  robotic  arm  movement 

experiments  discussed  in  chapter  6.   The  experiment  results 

confirm  that  the  same  sensation  processed  iteratively  produces 

values for CI (formula 3.9) within a tolerable range.  However, the 

experimented sensory types were unimodal and less complicated in 

nature.  The application of these formulas to more complex (e.g. 

visual sensations) and multimodal sensory pattern recognition may 

require further enhancements.

Page 105 of 352



Chapter 3- Behavioural Congruence through Implicit Communication

3.4.4 Relationship  across  several  Temporal  Uni-Modal 

Frames

The word “situation” is descried in Webster’s dictionary as “the 

way in which something is placed in relation to its surroundings” 

[WEBS88].  A situation could be represented by a series of TSFs in 

a selected modality.  Two vehicles colliding with each other could 

be  called as  a  situation of  a  vehicle  accident.   A visual  sensory 

frame of this situation that shows two vehicles very close to each 

other would not give the intuition of the situation in its entirety. 

Only the sequence of frames that lead to the accident would give 

such an intuition to the situation.
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Time/Indexes C1-C2 C2-C1 C1-C3 C3-C1 C2-C3 C3-C2

T1 0.2 0.25 0.1 0.25 0.1 0.1

T2 0.1 0.3 0 0.35 0.125 0.15

T3 0.15 0.35 0.1 0.2 0.2 0.2

T4 0.2 0.3 0.125 0.25 0.25 0.25

T5 0.25 0.25 0.2 0.35 0.2 0.35

T6 0.3 0.2 0.15 0.4 0.12 0.3

T7 0.275 0.15 0.125 0.35 0.1 0.32

T8 0.4 0.2 0.2 0.3 0.23 0.33

T9 0.35 0.3 0.25 0.3 0.3 0.4

Table 3.1: Cohesive Indexes spread temporally within a situation in a single 
modality

Figure 3.12: Line graph of the spread of Cohesive Indexes temporally

The  dataset  depicted  in  Table  3.1  and  Figure  3.12,  shows  the 

changing values of Cohesive Indexes of a situation related to the 

neighbouring state values of a moving agent  in the Grid World 

experiment.   This  dataset  would  be  more  meaningful  when 

represented  as the difference of  indexes  across  subsequent  time 
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intervals  as  depicted  in  Table  3.2  and  Figure  3.13.   These 

differences fall into a pattern which would be unique to a given 

situation.   The  pattern  could  be  identified  by  using  clustering 

algorithms described earlier.

Time/Clusters C1-C2 C2-C1 C1-C3 C3-C1 C2-C3 C3-C2

T1-T2 0.1 -0.05 0.1 -0.1 -0.025 -0.05

T2-T3 -0.05 -0.05 -0.1 0.15 -0.075 -0.05

T3-T4 -0.05 0.05 -0.025 -0.05 -0.05 -0.05

T4-T5 -0.05 0.05 -0.075 -0.1 0.05 -0.1

T5-T6 -0.05 0.05 0.05 -0.05 0.08 0.05

T6-T7 0.025 0.05 0.025 0.05 0.02 -0.02

T7-T8 -0.125 -0.05 -0.075 0.05 -0.13 -0.01

T8-T9 0.05 -0.1 -0.05 0 -0.07 -0.07

Table 3.2: Cohesive Index differences across subsequence time slots within a 
situation

Figure 3.13: Line graph of the spread of Cohesive Index variances temporally

In relation to the AAANTS model, an agent needs to practically 

keep the history of sensory patterns to identify a situation.  In the 

real-time environment an agent maintains a queue of TSFs where 

the new TSF is added to the top of the queue and obsolete frames 
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are taken from the tail of the queue.  At each temporal gap, the 

agent needs to perform a Situational Analysis of the cached frames 

against the learnt patterns of known situations.  If a situation is 

identified based on the reinforcements  received during the past, 

the agent would execute the necessary action for that situation. 

3.4.5 Relationship among Multi-Modal Frames

The Cohesiveness Index takes into consideration the sensations in 

relation to a single mode of sensation such as smell, touch, light 

etc.   However,  a  given  situation  would  produce  sensations  in 

multiple  modalities  that  would  ideally  produce  several 

Cohesiveness Indices.  Figure 3.14 shows that sensory frames are 

collected  from  several  modes  by  the  sensory  receptors  and 

forwarded  as  an  amalgamated  frame  to  the  cognitive  elements. 

The  pattern  matching  engine  in  the  cognitive  tier  should 

implement an appropriate algorithm to match against remembered 

patterns.
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 Figure 3.14: Sensory patterns using elementary signal pulses in a multi-modal 
scenario
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This aspect of building relationships among multi-modal sensory 

frames is not pursued in this dissertation.  This is an aspect that 

could be researched further to gain insight to integration of multi-

modal  sensations.   This  is  similar  to the  concept  of  Perceptual 

Integration  [COEN00],  where  perception  layers  from  multiple 

modalities are integrated into a holistic abstraction.  The McGurk 

effect [COEN00] is perhaps the most convincing demonstration of 

the inter-sensory integration where one modality radically changes 

perceptions  in  another  through  perceptual  integration.   Post-

perceptual and multi-modal integration are two popular techniques 

for perceptual integration [COEN00].  Post-perceptual integration 

occurs in systems where the modalities  are treated as  separately 

processed,  increasingly  abstracted  pipelines  and  the  outputs  of 

these pipelines are integrated in a final integrative step where as in 

multi-modal integration perceptual events are separated from the 

specific  sensory  mechanisms  that  generate  them and  integrated 

into a higher-level representation.

3.5 Chapter Summary

The  objective  of  this  chapter  is  to  introduce  the  coordination 

model that achieves behavioural congruence as a result of altruistic 

interactions  amount  a  group  of  agents.   The  AAANTS 

coordination  model  consists  of  aspects  related  to 

structure/composition,  procedures  and  heuristics.   All  these 

aspects  were  described  in  terms  of  innate  and  adaptive 

characteristics.   Structurally,  agent  life-cycle  and  AAs  were 

identified as innate.  However, ATs could be categorised as hybrid 

in nature where an initial collection is represented inherently and 
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the  rest  formulated  using  a  stochastic  method.   Behavioural 

Concentres are special hubs that are structurally placed based on 

the reinforcements from the environment and considered adaptive 

in nature.

Six heuristics were introduced with the inspiration from the insect 

world with the intension of formulating behaviour as a result of 

emergence.   The  implementation  of  these  heuristics  would  be 

partly  done  by  individual  agents  and the  rest  by  the  AAANTS 

framework.

Procedures  relating  to  behaviour  were  mostly  related  to 

recognising  sensory pattern from sensory modalities.   The latter 

sections  clearly  described  the  methods  of  identifying  sensory 

patterns using clustering algorithms and further identifying sensory 

frames uniquely using hubs.  Also the relationships among sensory 

frames were established to identify situations.
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4.1 Introduction

The adaptations to the environmental changes could happen either 

as improvements in knowledge or as genetical adaptations within a 

species. The less complex animals such as insects tend to react to 

the  environment  mainly  based  on  genetically  implanted 

information.   The genetics tend to implant innate capabilities to 

map appropriate behaviours to environmental perceptions.  Even 

higher level animals such as humans tend to posses these innate 

capabilities primarily as reflex behaviours.  In fact, the animals with 

shorter  life-span such as some species  of  insects  tend to thrive 

more on genetical information for their behaviour due to the lack 

of reasonable time to learn either by supervision or reinforcement. 

Therefore, genetical mutation is a very useful mechanism for the 

survival of many species where time-consuming learning becomes 

a  limitation.   However,  there  is  one  simple  lesson  to  be  learnt 

throughout history; species that failed to adapt (either genetically 

or by active learning) to the environment have failed to survive and 

were eliminated from the landscape.

According to Marvin Minsky [MINS86], the development of the 

human mind from infancy to adulthood is achieved in terms of 

stages  where  each  stage  acts  as  a  teacher  to  the  next  stage  by 

providing  guidance  and  assistance.   MAXQ  method  [DIET00] 

provides  a  similar  strategy  to  that  of  AAANTS  where  it 

decomposes a reinforcement learning problem into a set of sub-

problems.  However,  MAXQ differs from AAANTS due to the 

use of both hierarchical policy and reinforcement learning in a top-
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down  arrangement  as  opposed  to  a  bottom-up  emergent 

arrangement.  The stage wise development is further confirmed by 

the arguments of Vijaykumar Gullapalli [GULL92], where a high 

level complex task could be decomposed into a sequence of lower-

level tasks and thereafter, the same activity performed on the sub-

tasks  until  atomic  functions  are  reached.   HAM  (Hierarchical 

Abstract  Machines)  is  another  analogy  where  non-deterministic 

finite state machines are organised in a hierarchy and higher level 

abstractions invoke lower level machines [PARR97]. 

The  preparatory  experiments  of  this  research  confirmed  that 

instructive feedback used in isolation produced less optimal results 

in comparison to the AAANTS model.  The experimentation of a 

rule-based  instructive  feedback  method  in  comparison  with  the 

AAANTS model is depicted in Figure 6.19 in chapter 6, section 

6.5.   In  real-world  problems,  reinforcement  learning  algorithms 

using delayed reinforcements converge too slowly to the optimal 

solution [PIER94].  Further, it is accepted that most supervisory 

methods  are  time  consuming  and  domain  specific  [PIER94]. 

Consequently, there was initial inspiration to search for a technique 

that could blend these two approaches.

When  analysing  the  learnt  behaviour  in  the  natural  world,  it 

became clear that some aspects are learnt, and the rest innate.  The 

innate behaviour could be pre-coded knowledge such as a good 

exploration strategy or an initialisation of action-values [PIER94]. 

It was initially identified that all animals are born with a repertoire 

of pre-coded innate capabilities  and the rest is learnt during the 

lifetime of  existence,  either  through supervision and or  rewards 
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from the environment.  This understanding has set the foundation 

for the adaptation model of AAANTS. 

The rest of the chapter focuses on the adaptation methodology of 

the AAANTS model.  The adaptations are discussed in two broad 

strategies.  The initial discussion relates to the use of reinforcement 

learning as perturbations to the internal knowledge representation. 

This is the main mechanism that makes sure that, the participants 

of an agent colony adjusts to each other, for achieving behavioural 

congruence.   The  latter  part  of  this  chapter  focuses  on  the 

continuation of existing knowledge to the future generations of the 

colony.   The  AAANTS  model  is  inspired  by  the  periodic 

regeneration  of  new  agent  instances  by  combining  genetical 

material  of  successful  individuals  of  the  colony.   The  learnt 

knowledge  of  successful  individuals  is  mixed  to  generate  new 

offspring and unfit individuals are eliminated from the colony.

4.2 The Learning Architecture

The  architecture  of  a  system  should  encompass  the  building 

components  and  their  interconnectivity  [GAMM95].   The 

objective of architecture is to facilitate the functionality expected 

out  of  an  entity.   The  purpose  of  learning  architecture  is  to 

facilitate  the  survival  within  a  particular  type  of  environment. 

Hence, the demands of the environment and the purpose of the 

species dictate the overall learning structure of an entity.
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4.2.1 The AAANTS Learning Architecture

The overall architecture of the AAANTS model consists of myriad 

of agents that harmonise to achieve behavioural congruence.  All 

agents are homogeneous in structure but may vary in behaviour 

and capabilities  based on the state model  and experience.   The 

generic learning architecture of an agent is depicted in Figure 4.1 

[RANA05].

Perception Adaptor

Actuation Controller

State Model

State 
Consciousness

Partner 
Consciousness

Figure 4.1: Learning Architecture of an agent within the AAANTS framework

Figure 4.1 shows a generic agent interface to the outer world with 

the  use  of  the  architectural  components  called  as  Perception 

Adaptor  and  Actuation  Controller.   The  Actuation  Controller 

translates the internal need of an action to an external command 

acceptable by the actuators.  The actuators are detached from the 

agents due to the fact that a community could share the services of 

a single actuator.  Similarly, the sensory receptors are also detached 

from agent instances which publish a continuous array of signals to 

be shared within a community.  These signals that relates to the 
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respective modality of interest by the agents are intercepted and 

filtered by the Perception Adaptation layer.

The State Model maintains a summary of states that is of interest 

to the agent which would always represent a subset of global states. 

It maintains a repository of information about state-action values, 

rules, hub states and optimal / sub-optimal paths.  The building 

elements of the State Model are based on frame based knowledge 

representation.   The  frames  contain  information  related  to  the 

sensations [RANA03c].  A frame or group of frames may represent 

a state in the environment where a state is uniquely identified by 

the  amalgamated  sensations  from  all  sensory  modalities 

[RANA03c].   Therefore,  at  a  given instance  the inputs  from all 

sensory modalities would, map to one or many frame collections 

with a calculated probability  of relatedness.   The frame instance 

with the highest probability of relatedness would be taken as the 

match. 

The consciousness modules (State and Partner) keep references to 

the on-going sensations as well as to the peers in the colony within 

the locality  of a homogeneous group.  It is  with the use of the 

consciousness elements that an agent could take actions that are 

coordinated  with  others.   The  state  consciousness  module  is 

responsible for keeping track of the current state of the agent.  It 

keeps real-time pointers to the frame instances found within the 

state model.  The state model keeps the frame instances organised 

into a connected mesh.  The consciousness indicates the progress 

made within a given period of time which obviously relates to a 

definite  past  and  an  uncertain  future.   The  past  is  a  simple 
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aggregation of the sequence of states visited executing respective 

actions while receiving rewards from the environment.  The past is 

very important especially when considering reinforcement learning 

methodology where the past rewards are used to predict the most 

desirable future.  The most desirable future relates to the path with 

the optimum reward based on the past reinforcements.

4.2.2 Relating Knowledge and Learning

Learning and intelligence are intimately related to each other.  It is 

usually  agreed that  a  system capable  of  learning  deserves  to be 

called  intelligent;  and  conversely,  a  system  being  considered  as 

intelligent is,  among other things, usually expected to be able to 

learn [WEIS00].  

A goal could be achieved with a properly coordinated sequence of 

actions  by  a  community  of  agents  through  inter-agent 

communication.  A collection of actions that are highly reinforced 

by the environment that generates the most appropriate solution to 

a  specific  problem  situation  could  be  called  as  properly 

coordinated.   During  the  initial  agent  interactions  with  the 

environment, each agent tends to maintain a flat structure of state 

sequences.   However,  as  the  agents  iterate  through  the 

environmental  states  with  the  objective  of  finding  the  global 

optimum may result in a collection of states amalgamated through 

Hubs arranged into a layered hierarchy.  For example in Figure 4.2, 

the states represented by L1S1, L1S2, L1S3 ending with sub-state 

L1S4 in layer 1, could be represented by a single hub state (L2S1) 

in layer 2 [RANA05].  The selection of the hub state would result 

Page 118 of 352



Chapter 4- Reinforced Group Adaptation

in  automatic  promotion  of  the  sub-states  as  the  next  level  of 

reachable states. 

S ta rt L1S1 L1S2 L1S3 L1S5 L1S6 L1S7 L1S9L1S4 L1S8

L2S1 L2S2

L3S1

Figure 4.2: Hierarchical layers based on hubs and states

A higher level state represents a link between two very important 

lower level states – the Hub states.  These hub states are highly 

connected states from which the system could reach many other 

critical  states.   The states  in between hubs are more decided in 

terms of the sequence of execution whereas the hub states open up 

a  list  of  options.   This  is  to  some  extent  similar  to  Nearest 

Sequence Memory (NSM) [GARD98] where raw experiences are 

recorded as  a  linear  chain  and the  choice  of  the  next  action is 

evaluated based on the nearest neighbours in the experience chain. 

It was found that organising past experiences hierarchically scales 

better to problems with long decision sequences than, organising 

past  experiences  as  a linear  chain of primitive  observations  and 

actions [GARD98].  The hierarchy of states within the state model 

of AAANTS agents are not pre-defined, but dynamically expanded 

and  collapsed  with  the  iterative  adaptations  to  the  changing 

environment. 

Marvin  Minsky  [MINS86]  describes  a  theory  in  relation  to  the 

mind about agents in layers of societies which is analogous to the 
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hierarchical layers of hub states described above.  In this theory, 

knowledge is represented in memory with a type of agents called 

the “Knowledge-line” or shortly as “K-line” agents (discussed in 

Section 2.4).  The K-lines are organised into layers.  Each new layer 

begins  as  a  set  of  K-lines,  which  starts  by  learning  to  exploit 

whatever  skills  that  have  been  acquired  by  the  previous  layer. 

Whenever  a  layer  acquires  some  useful  and  substantial  skills  it 

tends  to stop learning  and changing,  and then yet  another  new 

layer could begin to learn to exploit the capabilities of the previous 

layer.

4.3 Exploration and Exploitation Strategies

An action transfers an agent from one state to another.  In a given 

state there could be many actions that transfer an agent to many 

other different states.   Normally,  an agent may tend to take the 

action  with  the  highest  expected  reward  as  per  the  previous 

experience.   If  an  agent  adopts  this  type  of  strategy  more 

frequently, it could be called as greedy and non-exploratory.  It is 

identified  that  greedy  actions  usually  contribute  towards  local 

optima [SUTT98a].   Therefore,  an agent  should exploit  what  it 

already knows in order to obtain rewards, but it also has to explore 

in order to make better action selections in the future.

The dilemma is that neither exploitation nor exploration could be 

pursued  exclusively  without  failing  at  the  task  [SUTT98a]. 

According  to  Leslie  Kaelbling  [KAEL96],  formally  justified 

approaches to the problem of finding the optimum blend of using 

exploration  and  exploitation  are  absent.   For  example,  when  a 
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group of agents are released to a grid world for foraging, a heuristic 

could  be  developed  to  initially  encourage  exploration  and 

thereafter converge towards an exploitation policy.  However, this 

strategy  would  not  succeed  in  an  environment  where  the 

environmental  dynamics  change.   The  new  environmental 

dynamics would require periodic exploration to optimise the policy 

in relation to the changes.

Exploration  could  be  done  using  methods  such  as  Boltzmann 

distribution (actions selected randomly), pseudo-stochastic choice 

(best  action  or  random  action  chosen)  and  pseudo-exhaustive 

choice  (best  action  or  least  recently  chosen)  [PIER94].   The 

experiments  of  Pierguido  Caironi  et  al [PIER94]  conclude  that 

Boltzmann distribution produces worst results in terms of steps to 

converge to the optimal solution.  Further, it is confirmed that on a 

stochastic task, each action must be tried many times to reliably 

estimate its expected reward [SUTT98a].

A  robotic  experiment  by  Poj  Tangamchit  et  al [TANG02], 

confirms that exploration could be made more efficient by dividing 

the problem area into sub-areas and having the robots disperse to 

explore  these  sub-areas,  which  would  consequently  induce 

cooperation.   Therefore,  exploration  among spatially  distributed 

collection of agents when converged would provide improvements 

to the global optimum with a reduced effort.   Further, a scenario 

of  an  agent  community  partitioned  into  neighbourhoods  is 

discussed in [SCHA95].  The form of communication considered is 

based on the idea that the efficiency estimators of agents within a 

neighbourhood would be shared among them when a decision is 
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made.   It  was  also  identified  that  Nash Equilibrium [NASH50] 

could be applied to restrict unilateral deviation of agents and would 

cause each agent’s choice to be in synergy with all others [HU98].

The  additive  and  subtractive  mechanisms  during  brain 

development could be used to explain exploratory and exploitary 

mechanisms [ELMA99].  This mechanism includes growth of new 

connections  among  brain  cells  (synaptic  sprouting  / 

synaptogenesis)  and  elimination  of  normal  connections.   The 

former is an additive process and the latter is a subtractive process. 

The  additive  mechanism  is  similar  to  exploration  where  new 

avenues  are  added to  the  repertoire  and subtractive  mechanism 

happens when proper reinforcements are not given to respective 

state  transitions.   The  additive  and  subtractive  mechanisms  are 

identified  to  support  early  learning  of  infants  and  further  the 

presence of noise was identified as an advantage due to protecting 

from falling into local optima [ELMA99].

The action selection strategy for exploitation and exploration are 

quite different. When in an exploration mode, the next action is 

selected  purely  based  on  a  stochastic  decision.   However,  the 

exploitation methodology is more complex.  The selection of the 

highest rewarded action to transit from one state to another would 

be a trivial task, but this would result in sub-optimal solutions that 

converge  towards  local  optima.   The  following  exploitation 

strategies were adopted by the AAANTS model to reach global 

optima [RANA05].

Page 122 of 352



Chapter 4- Reinforced Group Adaptation

4.3.1 Exploitation  Strategy  1  –  Preference  to  Highest 

Rewarded Actions

This  strategy relates  to selecting  actions  within  a  defined  action 

template  based  on  the  rewards  accumulated  during  past 

experiences.  Where there are several options for selecting actions 

within an action template, the agents would simply try to select the 

actions that would result in the highest probable rewards.  Further, 

it is important to state that the selection is applied mainly to one-

step look-ahead situations but could be modified to accommodate 

multi-step situations too.

It  should  be  mentioned  that  the  AAANTS problem  solving  is 

defined  as  a  co-operative  activity  among  a  group  of  agents  as 

opposed to direct competition (discussed in chapter 3).  Further, 

agents are assigned to distinctive AAs within an AT where there 

could only  be one-to-many relationship  among agents  and AAs 

respectively.   Therefore,  one AA is not assigned to many agents 

which  eliminate  agents  competing  with  each  other  within  the 

innate layer of the AAANTS model.  The selection of exploration 

and exploitation activities  happens through a stochastic  process, 

where the actions  selection algorithm reasonably  promotes both 

activities.  Hence, based on these reasons, it could be confirmed 

that the AAANTS model does not become greedy and suffocate a 

segment of the agent colony.  This aspect is further confirmed by 

the experiments discussed in chapter 6.

Each action ( )Aa i ∈  in state space (S) and Context (C).
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( )ic aE :  Accumulated  reward  for  a  type  of  action  in  a  given 

context,

( )ixc aV :  Reward  for  a  specific  instance  of  action  instance  of  a 

given action type i;

( ) )1.4(.
0

−=∑
=

n

x
ixcic aVaE

The  ( )[ ]ic aEmax  is  the  reward  for  the  most  globally  preferred 

action.   Therefore,  ( )[ ]ic aEmax  could  be  regarded  as  the  most 

preferred action within context C.

The  above  situation  becomes  complex  when  a  community  of 

agents act concurrently and compete with each other for a defined 

state transition.  For example, at a given moment there could be 

several agents that may decide to transfer to the same state based 

on  past  experience.   The  coordination  model  adheres  to  the 

following well-defined methodology to overcome this issue.

The  process  starts  after  all  the  agents  broadcast  the  forecasted 

reward  of  the  next  transition  state  within  the  community.   It 

should be first  understood that the whole community of agents 

work under the control of a single timer.  The agents perform the 

transition at the edge of a time slot, which ensures the temporal 

coordination across the whole community and further the inter-

agent  communication only  affects  the individuals within a given 

locality (discussed in section 3.3.1).  The agents in the community 

are  totally  autonomous  from  each  other  in  performing  their 
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activities.   The discretization of their  life-cycle into time slots is 

merely for the purpose of temporal synchronisation of actions of 

multiple agents and to resolve conflicts in solving critical sections 

of the state space.  The preliminary experiments done in relation to 

the grid-world foraging presented situations where multiple agents 

overlapped on a single state.  The agents get a chance to compare 

the most suitable candidate to proceed to a conflicting state using 

the time-slot method.

As mentioned above a broadcast signal is effective within a specific 

time  slot.   The  agents  that  compete  for  a  given  state  would 

compare  their  own  reward  values  against  others  and  allow  the 

agent with the highest value to proceed.  Hence, the agent with the 

highest  reward  value  would  effectively  perform  the  transition. 

However, this could happen only when agents within a community 

is of benevolent disposition and further the starvation of under-

performing  agents  is  controlled  through  stochastic  use  of 

exploration and exploitation by dominating agents.

After getting clearance for the state transition, the winner performs 

a lock on the required state, transit to the new state and releases 

the  lock  of  the  old  state.   The  information related  to  locks  of 

resources  is  distributed  within  the  community  of  agents.   The 

agents  should  only  retain  state  information  within  a  restricted 

locality.  When the most preferred state is occupied by another for 

a reasonable amount of time, the agent should not waste time with 

the expectation of reaching that state.  A good heuristic is for the 

agent to select the next best state.   This is another approach to 

escape from starvation.  Further, if two or more agents share the 
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highest  position,  the  first  agent  to  lock  the  resource  would  be 

appointed as the winner.

4.3.2 Exploitation Strategy 2 – Preference for Hubs

Unlike Strategy 1, this strategy would focus on multi-step lookup 

situations.  The action taken to reach the immediate Hub state is a 

good heuristic for exploitation.  If a hub state is sensed within the 

limited locality of sensations, the agents might consider planning to 

take multiple steps to reach this much desired state.  Since Hub 

states are major decision points for global success, the respective 

actions to reach them could be assumed as highly probable actions 

to reach the ultimate goal.

4.3.3 Exploitation  Strategy  3  –  Similarity  based  on 

Behaviour and State

Although two states are very unlikely to be exactly the same, some 

states could demonstrate a degree of similarity based on a selected 

set of attributes and behaviour.   The AAANTS learning model 

employs several methods to evaluate the similarity of states.  The 

outcomes of these methods are used to decide on a state transition 

based on the preference to another similar state,  as described in 

continuation.

Method 1: Similarity based on action patterns

When  a  definite  sequence  of  actions  are  executed  iteratively 

starting  from  a  known  state,  the  terminating  states  could  be 
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considered  at  least  closely  similar  to  each  other.   For  example, 

generically a simple list of actions executed sequentially could be 

used to open a door.  Hence, it could be concluded that execution 

of door open behaviour would always end up in a general state – 

inside/outside the premises. 

S1

S2 S3

S4 S5

S6 S7

S8

a1 a1

a2 a2

a3 a3

Figure 4.3: State similarity based on action patterns

The “door open” behaviour could be discussed in relation to the 

actions depicted in figure 4.3 as follows.

1. State  S1/S5 is  related  to the situation before  opening  the door 

where the person may walk and stand in front of a closed door.

2. Action a1 is related to unlocking the door which moves the current 

state from S1/S5 to S2/S6 which is a situation where the person 

stands in front of a closed but unlocked door.

3. Action a2 is related to pushing the door open which moves the 

current state from S2/S6 to S3/S7 which is a situation where the 

person stands in front of an opened door but on the out side.

4. Action  a3  is  related  to  the  person  moving  inside  the  premises 

which was earlier restricted by the closed door, which would move 

the current state from S3/S7 to S4/S8.

With  reference  Figure  4.3,  states  S4  and  S8  could  be  called  as 

similar due to the execution of an identical action pattern {a1, a2, 
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a3} in reaching the final state, provided the initial states S1 and S5 

also  have  higher  degree  of  similarity.   This  type  of  pattern 

recognition is a trivial process when considering search space of a 

single agent.  However, it becomes complicated when considering 

coordinated  concurrent  actions  of  a  group  of  agents.   The 

AAANTS model solves this problem with the use of ATs where 

the AAs are coordinated by multiple agents in a prescribed pattern 

(discussed in detail in section 3.2.2).

Method 2: Similarity based on feature patterns

States could be similar based on the attributes inherent to a state 

(e.g. temperature, pressure, radiation levels, light intensity, etc) or 

based on the spatial  arrangement of objects  with respect  to the 

neighbouring states and entities.   Hence, the neighbouring states 

could be used to identify spatial and attribute based patterns within 

an environment.

S2

S1

S1

S2

Q1

Q2

Figure  4.4:  State  similarity  due  to  spatial  and  attribute  patterns  of 
neighbouring states
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With  reference  to  Figure  4.4,  the  spatial  arrangement  of 

neighbouring states of S1 and S2 based on the angle of separation 

could be used to assess the similarity of  states  ( 21 QQ ≈ ).   The 

angle of separation of this grid world experiment was taken as the 

angle  created  on the  two dimensional  plane  among the  cells  in 

concern and the other two neighbouring states.  For example, with 

reference to Figure 4.4,  the angle of separation of the states  S1 

(Q1) and S2 (Q2) with reference to the two neighbouring obstacles 

(which are identical as a pair) is 180 degrees.  Hence, states S1 and 

S2 could be considered to demonstrate some level of similarity.

Method 3: State values based on rewards

Another way to evaluate the similarity of states is with the use of 

reward  values  received  during  the  past  experiences  with  the 

environment.   The state values are numerical  representations  of 

reinforcements  received  during  past  experiences  within  a  given 

domain.   The  states  could  be  grouped  into  homogeneous 

categories with the use of value bands.  The assumption is that the 

past experiences of all the agents are captured in a shared context; 

therefore experiences of individual agents could be shared amongst 

a community.  

The exploitation strategies are applied and selected by an agent in 

the above listed sequence of importance starting from strategy 1 to 

3 where strategy 1 being the most preferred.   The agents when 

deciding  on  the  next  most  preferred  state  of  transition  would 

evaluate  the  forecasted  future  rewards  from each  of  the  above 

exploitation  strategies.   The  calculated  values  for  each  available 
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state  for  all  3  strategies  are  discounted  based  on  the  level  of 

preference.  For example values representing strategy 1 to 3 should 

be  multiplied  by  1.0,  0.75  and 0.5  respectively.   Thereafter,  the 

strategy with the highest outcome is selected as the most suitable 

path for the next state transition.

4.4 Coordinated Rewards and Learning Patterns 

through Hubs

As  discussed  in  Section  3.4.3,  Hub  is  a  special  state  that  is 

recognised as important when compared to its neighbours.  A Hub 

could be created due to reasons such as high state values resulted 

from  episodic  reinforcements,  accumulation  of  special  interim 

rewards before reaching the final goal, local optima, and lastly and 

most  importantly,  states  that  are  used  by  agents  to  coordinate 

dependant actions [RANA05].

S11 S12

S21 S22 S23 S24

S31 S32 T

Agen t A

Agen t B

Agen t C

Hub X Hub Y

A 11

A 21 A 22 A 23

A 31 A 32

Time

Figure 4.5: Use of Hub states for agent coordination
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Figure  4.5  depicts  the  use  of  hub  states  to  coordinate  agent 

behaviour.  It depicts a situation where three agents A, B, and C 

perform  a  series  of  actions  individually  but  in  a  coordinated 

manner.   These  actions  may  belong  to  one  or  more  action 

templates coordinated by the listed agents.  Continuous experience 

in  the environment  has  enabled  these  agents  to learn that  state 

pairs  S12  and  S21  together  with  S24  and  S31  synchronise  the 

elementary actions of the three agents to perform a coordinated 

task.

Obstruction
Hub

Goal

Home

C

A

B

C

A

B

Q1 Q1

A

B

C

Q2

 
Figure 4.6: Use of hub states for coordination in heterogeneous environments 

Figure 4.6 depicts two examples of the use of Hubs by agents in 

heterogeneous domains.  In the grid world, the agent moves from 

home to goal state through a natural obstruction while receiving a 

reward from the environment.  The successive iterations through 

the maze would ideally accumulate a high reinforcement value for 

the state that connects the two obstructed areas.  This relatively 
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higher state value would classify this state as a Hub in respect to 

the rest of the states in the maze [RANA05].  

When considering the robotic arm scenario in Figure 4.6, reference 

angles among the joints A, B and C, are used as the criteria for 

coordination.   In  this  example  the  vertical  axis  is  taken  as  the 

reference point for measuring the angular differences.  The angular 

difference is the key attribute of a state.  The robotic arm achieves 

different tasks by learning from past experiences and investing in 

the hub states for each type of activity.   For example, if the angles 

Q1 and Q2 are learnt as required to hold an object, agent A and B 

would coordinate  at  the edge of  reaching  the hub state  angular 

values of Q1 and Q2 respectively.

4.5 The Credit Assignment and Distribution 

One of the most important functions of reinforcement learning is 

credit assignment.  The function of credit assignment should be 

done by an entity in the environment.  This entity which could be 

either an automated or manual process decides the success of the 

behaviour and assigns a quantified reward value to the participants 

of that behaviour.  

4.5.1 Introduction to Credit Assignment

A composite action is made up of elementary actions that must be 

performed together by a group of agents while concurrent actions 

are those that could be performed in parallel by different agents, 

without the need for synchronisation [GRIF99].  Assigning credit 
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to composite and concurrent actions is one of the most important 

issues in reinforcement learning [MATA94b].

A  complication  arises  when  formulating  strategies  in  dividing  a 

single reward value among all contributing actions [GULL92].  The 

problem to solve is whether to divide them equally or based on the 

importance of contribution.  Obviously, equal distribution is trivial 

as  opposed  to  contribution  based  distribution.   In  the  case  of 

group-level  learning  the  complexity  of  the  problem  is  further 

increased,  because  it  requires  determining  which  set  of  actions 

performed by the different agents in the sequence deserves credit 

or blame for the final outcome [DROG98].

It should be understood that the credit assignment function only 

generates the overall reward value and it is the responsibility of the 

agent  system  to  decide  on  the  distribution  strategy.   The 

distribution logic itself could be centralised or distributed.  In most 

agent systems a centralised entity decides the distribution whereas 

in distributed systems each agent is responsible for taking a slice of 

the  total,  based  on  its  own  evaluations.   The  Appendix  D 

elucidates  the  credit  assignment  and  distribution  techniques 

adapted by other agent systems.  The subsequent section discusses 

the technique used by the AAANTS learning model.

4.5.2 Credit Assignment and Distribution Methodology of 

AAANTS

It was stated in section 3.2, that a group of actions executed in a 

unique sequence and context would belong to an Action Template. 

An action pattern of a given AT instance should get refined over a 
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period of time based on the reinforcements from the environment. 

Thus  a  methodology  to  properly  evaluate  and  distribute  credit 

among  participating  agents  of  an  AT  is  an  important  aspect 

discussed  hitherto.   A  full  description  of  the  constituents  and 

operations of an AT is found in section 3.2.2.1.  It would be useful 

to reiterate that each started AA instantiates a timer that measures 

the temporal  progress of that atomic activity.   These timers are 

represented by symbols T1, T2 and T3 in Figure 4.7.

a1
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a4

s1

s2

s3

s4

e1

e2

e3

e4
Instance X +1

a1

a2

a3

a4

s1

s2

s3

s4

e1

e2

e3

e4

T1 T2 T3

S S S

Sensory Templates Sensory Templates Sensory Templates

Action Timers Action Timers Action Timers

Instance X

Figure 4.7: Isolating and assigning rewards to the key contributors within an 
AT

A new action pattern may differ from a prior action pattern due to 

changes in the action execution sequence as depicted in Figure 4.7. 

The instances X and X+1 represent two evolutionary stages of a 

single AT instance.  The stage X+1 differ from the original due to 

the change in the temporal execution start in action a2.  This would 
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have  resulted  due  to  preference  for  exploration  which  the 

respective  agent  may  have  decided  to deviate  from the  original 

pattern and explore a different combination of execution sequence. 

The  reinforcement  from  the  environment  is  related  to  a 

quantitative  integer  value  produced  after  completion  of  the 

behaviour.   The  new  action  sequence  shown  in  Figure  4.7 

(Instance  X+1)  should  receive  relatively  higher  or  lower 

accumulation of rewards over a period of time in comparison to 

the previously preferred action pattern represented as Instance X. 

If relatively higher value of reinforcement is given to instance X+1, 

then that  AT instance  would have higher  probability  of  getting 

selected  in  the  future.   However,  proportionate  and 

disproportionate  credit  distribution  options  are  available  for 

selection.   The  experiments  in  chapter  6  would  prove  that 

disproportionate  distribution of  rewards  as  a  result  of  assigning 

larger proportions to relatively differentiated actions yields better 

global optimum.

In relation to the rewards distribution strategy, the actions within 

an AT be represented as naa .....1 where n is the number of total 

action  instances  and  n~  represents  the  subset  of  actions  that 

deviated from the original plan.  

Let  xR be the quantitative reward received for this action pattern 

previously  and let  1+xR be the  reward  received  for  the  recently 

executed action pattern.  The differentiation of xR  and  1+xR  is 

due to the contribution of n~ actions.  The Ratio of Improvement 

(RI) could be defined using formula (4.2).
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)2.4(.1 −−= +

x
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R
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The strategy is to reserve a special portion of reward to be assigned 

to deviating actions and the rest to be equally assigned among all 

participants.   The rewards to be given to each participating AA 

produced  by  an  agent  are  calculated  as  a  simple  linear 

apportionment based on formula (4.3.).  This value is equal to the 

previous reinforcement recorded by the AT.  The credit or blame 

to be given to deviating agents is calculated with formula (4.4).

)3.4(./)]*([ 1 −−+ nRIRR xx

)4.4(.~/* −nRIRx

It should be noted that an increase in reward would be additive 

and the decrease in reward would be a subtractive to the originally 

inherited value from previous reinforcements.  A reciprocal effect 

on the reward assignment was devised (based on formula 4.3 & 

4.4) where an increment in rewards would increase the values of 

deviating agent actions and a decrement in rewards would increase 

the rewards of the non-deviating agent actions.

4.6 Reproduction of Successful Behaviour

A  colony  over  a  period  of  time  collects  agents  with  optimal 

behaviours  as  well  as  agents  trapped  in  local  optima  which 

altogether  hinder  the  overall  performance  of  the  community. 

Therefore,  considerable  effort  was  taken  while  designing  the 

AAANTS  model  to  periodically  eliminate  unfit  agents  and  to 

introduce more fitting agents.  This procedure is very similar to the 

evolutionary process understood in the biological world.
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A considerable amount of research has been already done in the 

academia  and industry on evolutionary  model  relationships  with 

agent adaptations.   Anthil  [BABA01],  uses genetic  algorithms to 

design  ant  algorithms  based  on  pheromone  distribution  for 

selecting the fittest set of parameters for a particular task.  MAB-

Net [OHTA00] is related to creating an artificial  neural network 

model  with  a  dynamic  structure  where  agents  could  change  in 

structure by additive and subtractive functions.  The evolutionary 

aspects of some popular experiments are described in Appendix E.

According to Rolf Pfeifer [PFEI01], an evolutionary process could 

be described by using elements such as genotype and phenotype. 

A genome encodes all the features of an individual and a genotype 

refers to the set of genes contained in a genome, where there are 

fixed number of genes in a defined species.  The final organisms 

that could be developed with the help of genomes,  through the 

process  of  development  are  called  as  the  phenotype.   It  is  the 

phenotypes that compete with one another in an ecological niche, 

and  the  winners  are  selected  to  reproduce,  leading  to  new 

genotypes.   This is  the basis  of evolution acceptable in biology. 

This process has succeeded for millions of years of evolution and 

is  an  inspiring  analogy  of  reference  when  designing  artificial 

systems.

It  is  common  in  nature  that  whenever  resources  are  scarce, 

competition is beneficial.  If the AAANTS model is to implement 

a  process  that  could  adapt  and  evolve  similar  to  that  of  the 

biological world, then special emphasis on encoding the hereditary 

features  in  genomes,  translating  genomes  into  phenotypes,  and 
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using  reproduction  capabilities  to  improve  new  generations  of 

existing species should be considered.  

4.6.1 Building the Genome

It  is  clearly  understood that  genes  are  the  building  blocks  of  a 

genome  and  a  genome  represents  the  complete  genetical 

information  of  a  biological  entity  [PFEI01].   An  AT could  be 

described as an analogy to a gene.  Hence, the ATs that could be 

defined  through  the  genes  are  identified  as  innate.   Within  the 

context  of  this  research it  should  be  stated  that  there  are  ATs 

defined  through antecedents,  innateness  and adaptations  though 

the experiments in chapter 6 only concentrates on innate ATs.

The  overall  collection  of  genes  that  belong  to  a  community  is 

distributed across agent instances.  The agent instances could be 

compared  to  phenotypes  as  discussed  previously.   A  gene 

representing an AT would be represented by several agents that is 

responsible  for  the  role  or  task  that  require  this  AT within  its 

repertoire of actions (the relationship among agents and ATs are 

explained in section 3.2.2.1).  For example a segment of ants that 

perform foraging as the primary role would have inherent ATs that 

are relevant to the task of foraging which are transferred through a 

limited list of related genes.  It should be clarified that there exists 

one to many relationships among genes and agent instances, which 

means a single gene assists in implementing a defined phenotypic 

behaviour among several instances of agents within a caste.  
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A1.. An are agents that perform atomic 
actions.  They represent a list of all elementary 
actions that could be performed in a 
community.  Each agent is responsible for a  
defined set of actions.  These actions can be 
combined in different combinations to create 
complex behaviour .

Atomic Actions

A1 A2 A3 A4 A5 A6 A7

Community

Caste A Caste B Caste C

Role 1 Role 2 Role 3

Task 2Task 1 Task 3

A1 A2 A3

Action 
Template

Figure  4.8:  Task  breakdown  within  a  community  and  affiliation  with 
elementary actions

The  structure  of  how the  AAs and ATs collectively  define  the 

overall behaviour within an AAANTS agent colony is represented 

in Figure 4.8.  As stated earlier, the behavioural parallel to the AT 

is a gene.  A collection of genes defines a task that progresses in a 

depicted  hierarchy  of  assemblages  such  as  roles  and castes.   A 

stochastic  or  declarative  approach  is  adhered  when  instantiating 

agents from genomes.  For example with reference to Figure 4.8 an 

agent that belongs to Caste B-Role 2 could be instantiated with 

Task 2, which would consequently acquire AAs 1, 2 and 3 within 

the respective AT.  A scenario could be that the same task (Task 2) 

could instantiate 3 agents where each agent represents each of the 

3 AAs in the AT.  The experiments performed within this research 

of  the AAANTS model  only  focused on declarative  method of 

instantiating  agents  for  ATs.   This  means  that  the  number  of 
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agents instantiated for a given AT is configured in the innate layer 

as opposed to using a stochastic process.

Trigger Node

Caste.Role.Task.Timing = ?;
Sensory Modalities 0..N  = ?;
Context = ? ;

Actuation Node

Sensory modalities 
from the external 
sensors

SM 1 SM 2 SM N

Progress indicators of external 
tasks

Figure 4.9: Representation of a behavioural gene at a very basic level

The  basic  structure  of  a  behavioural  gene  embedded  in  an 

instantiated  agent  is  summarised  in  Figure  4.9.   A  gene  is 

comprised of a Trigger Node and an Actuation Node.  The Trigger 

Node describes  the conditions under which the agent  would be 

active and the Actuation Node is capable of activating AAs of an 

AT that is under the control of a particular agent.   The Trigger 

Node within an agent is activated from the environment sensations 

that  get  processed  through  the  sensory  templates  (depicted  in 

figure 3.2).  The Actuation Node represents the AAs for which the 

agent  is  responsible  and  assists  the  Trigger  Node  to  make  the 

relationship  among  sensations  and actuations  based  on  rewards 

from the environment.  The AAs within an AT initiate behaviour 

by sending appropriate signals to the actuators.  The AAs within 

the  AT  is  triggered  based  on  the  sensations  from  the  sensory 
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modalities  intercepted  form  the  Trigger  Nodes  of  the  Gene 

instances.   These  sensory  inputs  also  provide  the  information 

related to the actuations from agents within the locality.

Even though agents gain the insight to overall structure of an AT 

consisting of AAs, their contribution may be limited to executing 

specific  isolated  aspects  of  an  overall  AT (discussed  in  section 

3.2.2.1).   Hence,  the  execution  of  an  AT  is  realised  by  the 

contribution of a collection of agents within the same locality and 

role.

4.6.2 Transforming the Genotypes to Phenotypes

When  the  behavioural  genes  are  properly  organised  into  a 

functional  breakdown  structure,  the  overall  genome  is  fully 

defined.   Each gene  would spawn agents  during  the phenotype 

definition  stage.   The  first  step  of  creating  the  phenotype  is 

instantiating the genes into distributed pools of agents (figure 4.10 

–  first  step).   The  relationship  among  a  homogenous  pool  of 

agents is closer, and mostly agents representing a given role would 

be co-located.   The closeness  is  defined not  in terms of spatial 

constraints but in terms of communication.  The communicated 

messages of a group of agents, travels within a shared channel and 

disseminated within a limited number of agents.
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Figure 4.10: Evolutionary changes of agents in an AAANTS system 

When all the genes are instantiated, the genotype would take the 

form of  a  phenotype.   The  phenotype  characteristics  would  be 

based  on  the  genotype;  however,  the  reinforcement  from  the 

environment  would change the basic gene representation over a 

period of time (figure 4.10 – Step 2).  This behavioural change may 

be  based  on the  temporal  changes  in  the  execution  of  AAs or 

change  in  sensitivity  to  sensory  modalities.   However,  the  new 

agent might be taken as more suitable to the community based on 

the rewards, though the older versions would also be coexisting 

until expelled.  The phenotype gets matured as it gains experience 
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and reaches  a  stage where  its  instances  are fully  adapted to the 

environment.   One problem of  maturity  is  the accumulation of 

redundant AT instances, the competition among which may hinder 

the overall performance of the community.

An  experienced  and  mature  colony  should  periodically  shed 

redundant burden of under-performing AT/agent instances (figure 

4.10  –  step  3).   This  objective  is  achieved  by  translating  the 

phenotypes back to the genotypes and filtering the fittest using a 

technique similar to natural evolution.  A technique based on the 

natural  theories  of  evolution related  to  ants  is  described  in  the 

continuation.

4.6.3 Survival of the Fittest Behaviours

The Hamilton’s formula (Appendix F) [HOLL90] states that, when 

part of a group sacrifices their reproductive rights for the others, 

then  the  reproductive  group  should  be  able  to  perform  that 

function  and  benefit  the  overall  community  considerably  better 

than the former getting involved in reproduction [HOLL90].  This 

type of altruistic behaviour is very abundant in the insect world. 

The worker ants sacrifices their reproductive rights for that of their 

queen who performs that function for the benefit  of  the whole 

colony.  As far as self-representative genes are contributed by kin, 

the insects would be willing to give up their reproductive rights. 

The  fitness  to  reproduce  in  an  altruistic  environment  could  be 

measured  using  Hamilton’s  Formula  [HOLL90]  for  Inclusive 

Fitness (IF).  This formula is explained in detail in Appendix F.
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)(RSE  is  the average direct  reproductive success of individuals 

possessing the genotype of interest which measures the number of 

offspring the individual injects into the population, in comparison 

with the remainder of the population [HOLL90].  The portion of 

the formula ∑ )(RSEb j  is the effect on the reproduction of all of 

the  collateral  relatives.   The  variable  jb
 is  the  coefficient  of 

relatedness, which is the probability that the relative j of the focal 

individual also possesses the allele of interest.  The above elements 

are discounted by )(IFA  which is related to the average Inclusive 

Fitness for the overall population.  The Hamilton’s rule says that, 

the benefit to relatives is discounted by their degree of relationship, 

so that the lesser the relatedness, the greater the benefit must be to 

counter balance the cost [HOLL90].

The AAANTS model for evolution uses the reinforced credit as 

the direct reproductive success  )(RSE  represented in the above 

formula.  The selection is done among the agent instances within 

an AT.  As described earlier, agents representing genes are assigned 

AAs within an AT.  Where there are several instances of the same 

AT, the related agents across these instances need to compete to 

be  the  fittest  to  be  selected  for  reproduction.   However,  after 

performing  the  above  calculation  to  each  AT,  based  on  the 

relatedness  and  altruistic  background,  the  best  agents  and  their 

respective  ATs would be selected for  reproduction and the rest 

could  be  filtered  out.   The  Relatedness  Coefficient  ( jb )  would 
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make sure the selected agents would contain maximum capacity of 

characteristics of others.

The  Relatedness  Coefficient  ( jb )  is  measured  based  on  the 

similarities in the Trigger and Actuation Nodes of the genes.  The 

AT instances could be compared with each other with the use of 

Situation Index (SI) as represented in formula 4.6.  SI provides a 

unique quantification to each situation represented by an instance 

of an AT.  If SI values of two ATs are closer, it means that the 

situation of application is similar.  The reproduction process would 

eliminate the less rewarded AT and keep the most suitable instance 

for  future  use.   The  SI  values  could  be  used  to  calculate  the 

coefficient jb  using formula 4.7.

∑ ∑
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(Where  xSI  -  Situation  Index  of  xth AT;  ySI -  Situation  Index  of  yth AT; jb  - 

Relatedness Coefficient)

The agent instances of an AAANTS colony periodically migrate to 

an inactive  state  (Section 3.2.1  –  Agent  Life  Cycle)  thereafter  a 

process  in  the  AAANTS platform performs  the  AT phenotype 

selection activity based on the formulas stated above.  Subsequent 

to the selection process, the unfit agents are eliminated from the 
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colony and the rest of the agents are transferred back to the active 

state to continue with their mundane activities. 

4.7 Chapter Summary

This  chapter  discussed  another  important  characteristic  of  an 

intelligent artefact – adaptability.  Learning is an important part of 

knowledge and intelligence.   It is through learning that an entity 

can  adapt  and  improve  itself  to  suit  the  changing  environment 

conditions.  AAANTS model is designed as an autonomous and 

adaptive system with the contribution of a myriad of simple agents. 

The adaptation of each of these agents is important to the overall 

adaptability of the community.

This chapter focused on the methodologies of learning adapted by 

the AAANTS model.  The adaptations are discussed in two broad 

strategies.   Initial  discussion relates  to the  use  of  reinforcement 

learning as perturbations to the internal knowledge representation 

of  executing  agent  instances.   This  is  the main mechanism that 

makes  sure  the participants  of  an agent  colony  coordinate  with 

each other to achieve behavioural congruence.  The latter part of 

this chapter focused on the continuation of existing knowledge to 

future  generations  of  the  colony.   The  AAANTS  model  is 

implemented  to  periodically  regenerate  new  agent  instances  by 

combining  behavioural  blueprints  of  successful  individuals  of  a 

colony.  The learnt knowledge of successful individuals is mixed to 

generate new offspring and unfit individuals are excluded from the 

colony. 
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5.1 Introduction

The realisation of  an agent  system is  usually  done  by using the 

most appropriate open agent platform available in the industry or 

academia.  The purpose of a platform is to provide an application 

skeleton composed of reusable micro-architectural elements called 

design  patterns  that  could  be  customised  by  developers 

[BOGN99].  An agent platform provides a generic platform with 

services,  APIs,  protocols  and standards  to  realise  various  agent 

models.  The main advantage of this approach is the reusability of 

software  components18 that  are  readily  available  to  create  agent 

applications dynamically.  However, in adhering to this approach, 

the agent system designers would be constrained by the limitations 

and functional boundaries of the selected platform.

The author evaluated several existing agent platforms (Appendix 

B) in relation to the objectives and implementation demands of the 

AAANTS model.  It was understood that the requirements of the 

AAANTS model differentiated from existing platforms due to the 

following four reasons.

1. AAANTS model is conceptualised on the reinforcement learning 

methodology and the selected platform should provide software 

objects that facilitate these functionalities.  Most of the evaluated 

platforms  did  not  possess  the  supporting  APIs  to  implement 

reinforcement  learning algorithms in an inherent  manner.  There 

18 “A  software  component  could  be  identified  as  an  independently  deliverable  package  of  software 

operations that could be used to  build applications or  larger components and that which assumes an 

architectural context defined by its interfaces.” [BOOC98].
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were  external  libraries  that  specialised  on  these  aspects,  but 

integration with the evaluated agent platforms were not tested and 

published.

2. The AAANTS model represents agents defined as a colony with 

relationship among each other based on kinship.   The evaluated 

platforms demonstrated object-oriented hierarchical relationships, 

but  lacked flexibility  expected in the AAANTS model  to define 

agent  relationships  based  on  kinship.   The  existing  platforms 

support the grouping of agents, however, it was difficult to realise 

various degrees of overlapping relationships among agents.

3. A core attraction of AAANTS model is the ability to define AT 

with the use of AAs.  Further, the AAs within a given AT could be 

distributed across several agent instances and requires mechanisms 

for  coordination.   Most  platforms  use  standard  cognitive 

communication  languages  that  were  not  suitable  for  real-time 

coordination of actions and lacked the capabilities of defining ATs 

to be coordinated across multiple agent instances.

4. The agent life-cycle concept was present in many agent platforms; 

however, the states and in-built behaviour related to evolution and 

elimination of unfit agents were absent.  There were possibilities of 

modifying some systems (e.g. Jade and Zeus) to accommodate this 

feature,  but  there  were  doubts  on  positive  realisation  without 

major modifications to the generic platform.

Based on the above four reasons, a rational decision was taken to 

build  a  generic  agent  platform  that  could  achieve  objectives 

demanded by the AAANTS model.
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5.2 Design considerations of the AAANTS 

Platform

The design of a system should encompass dimensions to achieve 

the defined objectives.  The following dimensions were taken into 

consideration during the design of the AAANTS platform.  These 

dimensions  were  derived  based  on  the  existing  agent  system 

designs  [FARH97],  general  characteristics  of  software  agents 

(Section  2.2)  and  the  objectives  of  the  AAANTS  model 

[RANA03b].

1. Functional Distribution model

The method of distributing application functionality among 

different types of agents that constitutes the agent system is 

focused in this consideration.   The functional approach is 

particularly  well  suited  to  centralised  systems,  but 

unprecedented in naturally occurring systems, which divide 

agents on the basis of distinct entities in the physical world 

rather  than  functional  abstractions  in  the  mind  of  the 

designer [PARU98].

The distribution model of the AAANTS system possesses 

hybrid characteristics of existing multi-agent systems, where 

individual  agents  in  the  system  are  not  fully  functional 

monolithic components and contributes collectively towards 

the overall functionality.  Therefore, the distribution model 

is such that there exists, no single agent that is responsible 
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for a defined function, but the responsibility of a function is 

shared among a group or more precisely a colony of agents.

2. Internal structure of agents

The  internal  constituents  and  their  interoperability  to 

accomplish  the  desired  functionality  of  an  agent  is  a  key 

design  dimension.   The  structure  of  an  agent  should 

facilitate the demands of its functionality in relation to the 

AI Mix and the agent life-cycle.  An agent is constructed as a 

compound entity composed of elements that support each 

of  these  aspects.   Further,  special  data  structures  were 

considered to facilitate the retention of information related 

to sensations and actuations.  

3. Coordination of behaviour

Special  attention is required to facilitate the locality  based 

communication  within  agents  of  a  given  caste.   The 

messages  should  be  disseminated  but  effective  within  a 

restricted  community  of  participants.   Subject-based 

information dissemination approach was adapted to realise 

the  locality  of  communication.   Further,  the  design 

facilitates the definition of ATs to be shared across multiple 

agent instances.

4. Knowledge sharing among agents

Communication  is  the  primary  method  of  knowledge 

sharing.  However, knowledge sharing among the agents is 

unique  due  to  implicit  and  non-pervasive  characteristics. 
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The  AAANTS  design  accommodated  a  method  for 

knowledge sharing, where information is published with a 

limited retention lifetime within which the interested agents 

should fetch the information of interest.

5. Agent environment

The  agent  environment  is  primarily  represented  by  a 

collection of embedded distributed services responsible for 

sensations and actuations [RANA99].  These services could 

be used as neural extensions of the agents for the purpose 

of sensations and actuations.  These heterogeneous services 

could  announce  their  capabilities  within  the  network  and 

interested agents could collectively use them in their goal-

driven activities.

6. Adaptation and continuous improvement

The platform should provide facilities in terms of functions 

and  data  structures  to  accommodate  the  reinforcement 

based learning of agents.  The continuous improvement of 

the  agent  capabilities  is  achieved  through  adaptation  and 

evolutionary methods.

5.3 The AAANTS Architecture

A very important aspect of realising an agent platform is related to 

selecting and or building an agent architecture.  The role of agent 

architecture is to define the separation of concerns that identify the 

main functions, which ultimately give rise to the agent behaviour 

and define interdependencies between them [LUCK97].  The agent 

Page 152 of 352



Chapter 5 – The AAANTS Framework

and  software  architectures  are  very  much related  to  each  other 

where  at  an  abstract  level,  software  architecture  involves  the 

description of components from which systems are comprised, the 

interaction among these components and the patterns according to 

which the components  are combined to form the entire system 

[BOGN99].  Similarly, the AAANTS architecture is comprised of 

components  that  interact  with each other  into a  layered pattern 

[RANA02a]  [RANA02b].   The  components  of  some  level  of 

homogeneity  are  accumulated  into  a  single  layer  and  the 

interactions  of  these  layers  are  done  through  well-defined 

interfaces.   A detailed description of the AAANTS architecture is 

discussed in continuation.

5.3.1 The Layered Architecture of AAANTS

The AAANTS agent architecture is conceptualised based on the 

best practices of software architectural and design patterns.  The 

layered  approach  [COEN97]  is  one  of  the  most  popular 

architectural  patterns found in both natural  and artificial  system 

designs.   The AAANTS architecture  is  built  on a  three layered 

architecture.  Figure 5.1 shows the organisation of the three layers, 

namely, distributed service layer, service adaptation layer and the 

layer representing colony of agents [RANA03b].
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Figure 5.1: Overall layered architecture of AAANTS platform

The external environment refers to the natural environment where 

sensations  are  generated  and  further  the  actuations  change  the 

state  of  the  environment.   The  external  environment  is  the 

facilitator  for  the  outer  layer  that  hosts  the  distributed  services 

responsible  for  various  kinds  of  sensations  and  actuations 

[RANA03b].  The services could be of heterogeneous nature based 

on the modalities of sensations and actuations.  New services could 

be  introduced  to  the  Distributed  Service  Layer  with  minimal 

disruption to the existing  services  [RANA03b].   A new service, 

which may either perform an actuator or a sensory function, would 

become part of the agent platform by simply adapting the common 

communication protocol among agents and services.
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Figure 5.2: Integration of agent colony with distributed services

Figure  5.2  depicts  the  Service  Adaptation  Layer  [RANA03b] 

[RANA02b]  that  consolidates  the  information exchange  process 

among  services  and  agents.   Different  types  of  parsers  and 

translators  are used for  this  purpose.   The heterogeneity  of  the 

services are neutralised using this layer of functionality.  This layer 

contains  communication  wrappers  that  enable  the  services  to 

translate information to common messaging descriptors.

The inner most layer represents the software agents that may be 

distributed among several colony containers.  The agents interface 

with the services through the communication middleware which is 

part of the Service Adaptation Layer [RANA02b].  The agents are 

organised  into  groups  or  more  accurately,  colonies  which 

represents self-sustaining synergistic entity.  A group is sustained 

by a colony container which provides an execution environment 

and other facilities common to all  agents.   The services such as 

execution  control,  persistence,  life-cycle  management, 
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reproduction and fault  tolerance is handled by the agent  colony 

container.

A single implementation of AAANTS is considered as a colony 

since it represents a distinguished localised population.  A typical 

colony consists of at least single instances of the above discussed 

processes.  Among them the Agent Colony Container (henceforth 

referred  as  the  container)  is  a  dominant  process  that  facilitates 

fundamental and shared services to agent instances.  The container 

is a run-time environment that contains and executes agent related 

components and provides a standard set of services to them. Some 

implementations  may  consist  of  many  instances  of  distributed 

containers  for  the  purpose  of  load  balancing.   The  containers 

control  the  life  cycle  of  the  agents  that  consist  of  initialisation, 

start,  execution,  reproduction,  stop and inactive states  (life-cycle 

discussed in section 3.2.1).  

The container  is  of  prime importance to the AAANTS concept 

since there is a requirement to manage an immense collection of 

agent  instances  concurrently.   Each agent  is  represented  with  a 

self-contained unit of automation that is responsible for a partial 

outcome  of  a  behaviour  demonstrated  by  the  colony.   Other 

related  implementations  such  as  “Anthill”  [BABA01] 

conceptualises  a  nest  which  is  similar  in  concept  to  that  of  a 

container.  However, the AAANTS container does not distinguish 

a single instance of a container as a nest, since a single nest could 

be  distributed  on  multiple  containers  which  are  linked  by  a 

message oriented communication bus.
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An agent thrives on the services provided by the colony container 

and uses its internal structural components to interface with the 

service  adaptation  layer.   During  the  creation  of  an  agent,  the 

colony container assigns a thread of control for each agent to be 

autonomous.  Each agent maintains structural elements related to 

knowledge representation, communication and adaptation. 

5.3.2 Structural Elements of an AAANTS Agent

An ant colony is composed of a numerous collection of individual 

ants.  As we discussed earlier, a colony could again be segmented 

into groups of ants called as casts that are similar in composition 

and  behaviour  to  implement  a  specific  set  of  functionality. 

Though  there  are  differences  in  different  groups  of  ants  in 

structure  and  functionality,  they  are  all  designed  with  reusable 

components.  Therefore, introducing a new ant to a group in the 

colony by the queen is so natural since it is another collection of 

reusable components that when produced and given life would be 

a  complete  autonomous  entity  that  work  in  harmony  with  the 

existing ant community.

Based  on  the  above  understanding,  the  AAANTS  model  is 

conceptualised  using  objected-oriented  paradigm  due  to  its 

inherent facilities for modularisation.  Therefore, an agent in the 

AAANTS platform is composed of a collection of objects,  each 

specialised in a particular type of function in relation to the AI 

Mix.   Each agent  has  a  thread  of  execution  for  autonomy and 

depends on the container for the resources.
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Figure 5.3: Conceptual structure of an agent in the AAANTS colony

The  structure  of  an  agent  consists  of  elements  represented  in 

figure 5.3.  The Container Interaction Layer supports the agent to 

interact with the agent colony container for the purpose of agent 

life-cycle  management.   The agent  execution controller  interacts 

with  all  the  components  within  an  agent  to  produce  the  final 

behavioural  outcome.   Further,  there  are  several  components 

dedicated  to  knowledge  representation,  adaptation  and 

communication which are harnessed by the execution controller 

during execution.  These modules contain both data structures and 

methods required to implement their respective functionalities.  

Each  agent  component  is  derived  from  a  generic  parent  class 

defined in the Java programming language.  This “GenericAgent” 

class is responsible for implementing life cycle related functionality. 

Further, all  the objects  within the agent architecture implements 

the  standard  Java  Serializable  interface  to  support  persistence. 

Consequently, all the agents in a colony could be persisted while 

preserving the state and thereafter activated to life.  Persistence is a 
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useful feature of a progressive colony since it could preserve the 

state across administrative chores.

The agent execution controller interacts with the communication 

interface to send and intercept messages.  As discussed earlier, the 

communication middleware publishes messages in a subject-based 

manner  and  communication  interface  facilitates  in  capturing 

filtered messages as instructed by the execution controller.   The 

execution  controller  together  with  the  communication  interface 

filters messages specific to kin and locality. 

5.4 The AAANTS Agent Communication

The agent communication with the use of speech acts, protocols, 

ACLs  and  ontologies  are  mainly  related  to  the  cognitive  agent 

models.  The reactive agent models do not implement such diverse 

and complex communication methodologies.  In contrast to these 

two popular  approaches,  the  AAANTS model  defines  an  agent 

communication methodology that is far too simple in nature when 

compared to cognitive models but relatively comprehensive than 

reactive models.  This approach is appreciated by Martin Beer et al 

[BEER99],  who  states  that  cognitive  agent  communication 

languages  may  be  too  complicated  for  certain  kinds  of  agent 

applications that do not need speech acts and logic to carry out 

their negotiations.

5.4.1 The AAANTS Communication Framework

The messages among the elements in the AAANTS framework are 

exchanged through the communication layer which is a sub-system 
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of  the  overall  platform.  As  represented  in  Figure  5.4,  the 

communication layer is composed of two message busses, namely, 

the sensory  bus  and the actuator  bus.   The  sensory  bus carries 

information  related  to  sensations  from  the  sensory  services 

towards  the  agents  and  the  actuator  bus  carries  information 

generated  from the  agents  towards  the  actuator  services.   The 

separation of sensations and actuations into two message buses is 

done in a virtual manner rather than physical,  i.e. two high-level 

messaging  subjects  are  derived  within  a  single  physical  message 

bus.  The rationale for this separation is that the message filtration 

activity by the agent communication interface tends to be relatively 

simple with two logical message buses.
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Figure  5.4:  Distributed  interaction  of  agents  and  services  through 
communication middleware

A  key  feature  of  the  communication  framework  is  the  loose 

coupling  of  agents  and  services  [RANA99].   Consequently,  the 

agents and the services could be rearranged with more dynamism 
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and freedom.  New services could be added and existing services 

removed with minimal configuration changes to the platform.  The 

configuration changes would concentrate mainly on actuator and 

sensory semantic parsers.

5.4.2 The Messaging Process

The messages are exchanged within and across agents and services. 

A  message  consists  of  two  encapsulated  segments,  namely,  a 

header and content information.  The sensory signals published by 

distributed sensory services and the actuator signals published by 

the agents are disseminated in the network on a predefined subject. 

The subject together with other meta-information is represented in 

the header portion of the message.  The agents and services could 

publish, subscribe and intercept messages on a subject of interest. 

This  concept  adheres  to  the  observer  pattern  with  respect  to 

software design patterns [GAMM95].  A subject simply represents 

a  homogeneous  collection  of  sensations  and  behaviours.   The 

subjects are organised in a hierarchy, as a result which a message 

consumer listening to a parent subject would intercept all inherited 

messages classified under the parent.

The published messages are not retained in the network for later 

consultation,  hence  non-persistent.   Therefore,  the  AAANTS 

framework  has  provided  a  service  called  the  Message  Queue 

Service  (MQS)  [RANA03a]  to  retain  the  history  of  published 

messages.  This essentially acts as a repository of all sensory and 

actuator messages that have taken place within a specific period of 

time.  Agents could communicate with the MQS to query recent 
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patterns of data.  The information stored in the MQS performs an 

analogous function to that of pheromones used in insect colonies; 

hence,  the  messages  are  only  kept  for  a  standard  duration  and 

deleted  thereafter.   MQS  have  similarities  to  the  blackboard 

technique [FERB99] [WEIS00] used in several existing multi-agent 

platforms.

The  agents  in  the  AAANTS system work in  a  community  that 

intercept  environmental  sensations  and convert  them to actions 

that  benefit  the  society  as  a  whole.   However,  it  was  clearly 

discussed  that  the  behavioural  contribution  of  the  AAANTS 

model  is  due  to  the  coordinated  effort  of  a  myriad  of  agents. 

Though the sensations and actuations are bridged with the agent 

colony through the communication middleware, the agents should 

exchange messages among the kin for the purpose of coordination 

as  discussed  in  chapter  3.   These  coordination  messages  also 

passage  through  the  sensory  bus  using  differentiated  subject 

headers.

5.5 Team Formation and Coordination

The team formation of a myriad of agents that try to coordinate 

with each other in order to achieve complex macro behaviour is a 

daunting  task.   However,  the  discussion  hitherto  describes  the 

building blocks of such coordination in relation to the strategies 

observed in the natural colony life of insects.   The continuation 

explains  the  implementation  of  macro  level  grouping  and  team 

formation among agents within the AAANTS platform.
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The  AAANTS model  is  composed  of  a  colony  of  agents  that 

achieves  goals  collectively.   Therefore,  the  agents  would 

periodically actuate individual actions to satisfy the needs of the 

community.  When several urgent needs occur at once, there must 

be a way to select the best outcome for the overall community. 

One scheme for this might be the use of a central market place, in 

which the urgencies  of  different  goals  compete  and the highest 

bidder  takes  control  [MINS86].   Another  way  is  to  use  an 

arrangement  called  “cross-exclusion”,  which  appears  in  many 

portions of the brain [MINS86].  In such a system, each member 

of a group of agents is  wired to send “inhibitory” signals to all 

other agents of that group which would make them competitors.
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Figure 5.5: Assignment of atomic actions to a colony of 4 agents to implement 
various ATs

The  AAANTS platform is  composed  of  a  collection  of  agents, 

each responsible for a defined type of activity.  For example, with 

reference to the Figure 5.5, the movement of a robotic vehicle with 

four wheels and two motors on either side could be controlled by 

four basic actions such as left forward (LF), left backward (LB), 

right forward (RF) and right backward (RB) [RANA03a].  These 

four actions could be executed in various permutations in sequence 
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and  or  concurrency,  to  result  in  a  wide  range  of  synchronised 

intelligent behaviours.  For example, the following is a summary of 

some behaviour that could result from the above mentioned basic 

actions. 

(LF) + (RF) = straight forward movement

(LF) + (RB) = Quick right turn

(LB) + (RF) = Quick left turn

(LB) + (RB) = straight backward movement

With  reference  to  Figure  5.5,  different  agent  compositions  and 

ATs could be devised based on objective of the experiments.  For 

example, four agents are taken into consideration, each responsible 

for the listed four basic behaviour.  Let the objective be to define 

an AT to implement a 180 degree right turn around an obstacle. 

To  realise  this,  the  following  basic  actions  should  work  in 

concurrency and sequence.  E.g. Move Forward (LF + RF), Turn 

Right  (LF),  Move Forward (LF + RF),  Turn Right  (LF),  Move 

forward (LF + RF).  The AT with 5 steps could be implemented 

by 2 agents with clear temporal coordination with the use of the 

sensory and actuator busses.

5.6 Implementation of the AAANTS framework

The  implementation  of  AAANTS  platform  consists  of  four 

principle  sub-systems,  namely,  Colony  Definition  Tool  (CDT), 

Information  Repository,  System  Execution  and  Control 

Components  (SECC)  and  System  Monitoring  and  Visualisation 

Components (SMVC).  Figure 5.6 depicts the implementation sub-

systems with the respective interdependencies.
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Figure 5.6: Sub-systems of the AAANTS platform

The CDT is a broad term representing a collection of application 

tools that is used to configure an agent colony.  Using the CDT an 

administrator could initially create an agent colony for a specific 

purpose and later change the definition to introduce new features 

to  the  implementation.   SECC  represents  the  core  run-time 

environment  consisting  of  agents,  communication  channels  and 

services.   It  is  a  highly  dynamic  and active  environment  that  is 

analogous to an active ant colony.  SMVC is a set of tools used by 

the administrators and the end users  to interact  with the active 

agent  system.   The  agents  found  in  SECC  would  use  SMVC 

components for user notification and feed-back.  The repository is 

a long-term storage mechanism of knowledge, configuration and 

audit information.
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5.6.1 Colony Definition Tool (CDT)

CDT  is  a  broad  collection  of  tools  used  by  the  system 

administrator for initial definition, configuration and maintenance 

of  an AAANTS implementation.   The agents  in  the colony are 

segmented  based  on casts,  roles  and tasks  where  the  nature  of 

sensory  and actuator  needs  of  agent  groups are  different.   The 

characteristics of an agent group are defined explicitly through a 

configuration  interface  (Figure  5.7).   This  interface  defines  the 

inner  attributes  and  functions  of  an  agent  together  with  the 

relationships with the rest of the agent types in the colony.

CDT is also a very versatile administrator tool to modify the layout 

and internal data structures of an AAANTS implementation.   It 

mainly uses the Information Repository for retrieval and storage of 

information.   Definition  Interface  is  used  during  initial  stages 

(definition)  of implementing an AAANTS colony and thereafter 

the  implemented  colony  thrives  on the  definition  stored  in  the 

repository.   Administrators  could  still  perform  modifications 

during  the  execution  of  an  implemented  colony  without 

interrupting run-time functions.
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Figure  5.7:  CDT  agent  type  and  related  knowledge  template  definition 
interface

Figure 5.7 depicts few of the graphical interfaces used to describe 

the knowledge structures and agent typology in a colony.  These 

knowledge  structures  (templates)  usually  match  the  attribute 

information of the sensory details published in the communication 

bus by the heterogeneous sensory services.  Therefore, templates 

for  new sensations  could be easily  configured when introducing 

new sensory  modalities  to  the  platform.   Also  the  Agent  Type 

Definition interface (Figure 5.7 – lower right) is used to create and 

describe agent types.  Since there could be different types of agent 

communities  in  a  colony  that  focuses  on  different  functional 

aspects,  the  above mentioned form could be used to formulate 

new agent types to be introduced to the colony.

When configuring the grid-world and robotic arm experiments, the 

CDT was useful in implementing the following aspects.
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1. Define the list of AAs required to implement overall  behaviour. 

For example the up, down, left and right atomic movements within 

the grid-world experiment and the movement of the three joints of 

the robotic arm experiment was defined using the CDT.

2. The configuration of all the innate ATs was done using the CDT. 

3. Assignment of the agent instances to the AAs of an AT is also 

done by the CDT.  For example an AT with three AAs could be 

instantiated  by  assigning  each  AA  to  an  individual  agent  or 

assigning all AAs to a single agent.  The decision of this assignment 

is based on the instructions given by the system administrator to 

the CDT.

4. The grouping of the agents to tasks, roles and casts as described in 

section 4.6.1 is also done using the CDT.

5.6.2 Colony Repository

Colony  Repository  is  a  facilitator  service  responsible  for  the 

persistence of definitions, knowledge, and configuration details.  It 

uses a file system structured through the XML format.  Therefore, 

the  content  is  independent  of  the  database  and implementation 

details.  Two most common clients of the repository sub-system 

are CDT and SECC.  The repository uses a file system for the 

storage of information.  The data model of the colony is simple 

and the complex relationships of data structures are created using 

XML.   In  addition,  the  meta-level  information  related  to  the 

sensory templates is also stored in XML format.
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Figure  5.8:  Entity  relationships  within  the  repository  of  the  AAANTS 

framework

The  high-level  entity  list  and  their  respective  relationships  are 

summarised  in  Figure  5.8.   The  definition  stage  relates  to  the 

process of setting up the entities and relationships that is required 

for  the  configuration  stage.   The  definitions  are  conceptual  in 

description  and  it  is  during  the  configuration  stage  that 

instantiation of conceptual entities take place.  For example,  the 

entities related to AA, AT and Agents which are defined during the 

definition  stage  are  given actual  configuration  details.   The  AA 

entities  are  assigned  the  type  of  the  actuation,  initial  execution 

duration  and  strength.   The  AT  entities  are  assigned  with  the 
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constituent  AAs and  initial  sequence  of  execution.   The  Agent 

entities  are  assigned  to  ATs  based  on  the  requirement  of  the 

experiment.  For example, an AT with 3 AAs could be instantiated 

with a single agent or 3 agents.

The configuration of the definitions is performed using the CDT. 

Among  the  entities  depicted  in  Figure  5.8,  Temporal  Frames, 

Sensory Frames and Behaviour Concentres is considered as meta-

level entities.  These entities are used during the execution phase of 

the  agent  colony.   The  configurations  done  using  the  CDT is 

instantiated to an evolving knowledge based by the SECC.  For 

example,  in  the  grid-world  and  robotic  arm  experiments,  the 

iterative episodes of interactions with the environment is persisted 

in the knowledge base for future needs.

The  configuration  activity  initiates  with  the  definition  of 

elementary  structures  such  as  the  Atomic  Actions,  Temporal 

Frames and Sensory Frames.   These become antecedents to the 

definition of Action Templates.  When the ATs are defined, the 

dependent entities such as Tasks are Roles could be derived.  The 

definition of the Agents and Agent Life-Cycle related structures are 

defined as the final phase of the configuration.  The entities such 

as Behavioural Concentres, Rewards and Hubs are required for the 

execution phase of the implementation.

5.6.3 System Execution and Control Components (SECC)

After  the  system  definition  phase,  AAANTS  colony  could  be 

instantiated  using  the  definitions  found  in  the  Repository.   An 

instantiated platform is in the execution phase of a typical colony 
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implementation.  All the active components in the execution phase 

are called as System Execution and Control Components (SECC). 

SECC sub-system could be broadly segmented into Agent Colony 

Containers, Distributed Services and Messaging Buses.

The primary constituent of SECC is the Agent Colony Container. 

The  instances  and  the  architecture  of  the  colony  containers  is 

depicted in figure 5.2 and 5.4.    The inner most layer in figure 5.1 

represents the container that facilitates the agent colony.  This is 

the dominant process that mainly focuses on the well being of the 

agent  instances.   The  container  is  a  run-time  environment  that 

contains  and executes  agent  related components  and provides  a 

standard  set  of  services  to  them.  Some  implementations  may 

consist of many instances of distributed containers for the purpose 

of  load  balancing.   The  containers  control  the  life  cycle  of  the 

agents  which  consists  of  several  sub-states  within  active  and 

inactive states (agent life-cycle section 3.2.1).  

The container addresses the following issues in order to provide a 

comfortable environment for the agents.

• Performance: The concurrent use of external resources should be 

optimised  and  life-cycles  of  the  agents  should  be  managed 

properly.

• Scalability: Depending on changing demands, the instances should 

be deployable on other fault tolerant container instances.

• Security:  Authorised  access  to  the  components  from  external 

entities is handled and managed properly.
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• Availability:  A  running  system  should  be  easily  recovered  with 

minimal down-time during a failure.

The  agents  are  autonomous  in  nature  and  the  container  only 

provides an execution environment and resources for facilitating 

the  functioning  of  the  life-cycle.   The  primary  control  of  the 

container over the agents is the capability of changing the life cycle 

state from inactive to active and vice versa.  With respect to figure 

5.6, the container is responsible for interacting with the SMVC and 

Repository.  The container reads all necessary definitions from the 

repository  during  the  start-up  and  persist  them  back  with 

enhancements in relation to reinforced knowledge.   Further, the 

container links up with the SMVC to offer control and monitoring 

capabilities to the system administrators.

The next element of importance to the SECC is the Distributed 

Services.   The broad term “Service” is  used to represent  all  the 

sensory and actuator related processes in the external environment 

that are interfaced with the agents.  The interface between these 

services and the agents are realised with the use of various types of 

parsers present in the Service Adaptation Layer (Figure 5.1).  The 

environmental  services could be used to produce sensory inputs 

(audio, visual, touch, smell, taste, etc) and actuator services (muscle 

movement,  voice,  etc)  found  in  the  natural  environment.   The 

sensory  information  such  as  video  and  audio  could  be  quite 

complex to process.  Therefore, the objectives of the services are 

to capture the sensory information, convert to a simple pattern and 

publish as a message to be intercepted by the agents.   Actuator 

services are also controlled through properly constructed messages. 
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The agents are able to convert their intensions to a message that 

could be understood by the services.

The Messaging/Communication Bus is another important element 

of the SECC that supports information exchange classified under 

subjects among agents and services.  For instance, a publisher of 

information could open a connection to the messaging bus and 

submit broadcast messages on a defined subject.  In the meantime, 

there  could be  any number  of  subscribers  already connected  to 

communication bus listening on a subject.  The subscribers would 

be  asynchronously  notified  of  any  message  available  on  the 

channel on the interested subject.  There could be many publishers 

and subscribers on a given subject.  Also, a particular subscriber 

could  listen  to  more  than  one  subject  at  a  given  time.   This 

described  aspect  of  subject-based  addressing  facilitates  the 

“implicit”  communication  among  the  agents  as  described  in 

chapter 3.

The messaging bus is distributed in nature and could be described 

as  a  Message  Oriented  Middleware  (MOM).   Java  Messaging 

Service (JMS) is used for this purpose.  The main purpose of the 

communication  bus  is  to  facilitate  agent-to-agent  and  agent-to-

service communication and messaging.  

5.6.4 System Monitoring and Visualisation Components

SMVC  is  a  complementary  collection  of  tools  that  assist  the 

administrators and end users to visualise the operational aspects of 

an AAANTS platform during run-time.  It generates reports and 

statistics of agent group activities.  Further, some interfaces of the 

Page 173 of 352



Chapter 5 – The AAANTS Framework

SMVC could be used to simulate sensory signals to conduct tests 

in controlled environments.   This environment was very helpful 

during the experiments conducted to gather statistical information 

and to create simulations.

The grid-world and robotic arm experiments benefited immensely 

due  to  the  assistance  from  the  SMVC  tool-set.   All  the 

experimental input and output data were manipulated with the help 

of this  tool.   Further,  the SMVC tool  was useful in acting as a 

simulator in most of the experimental scenarios.  Especially, in the 

robotic  arm experiment,  the SMVC tool  assisted a  lot  until  the 

physical aspects of the experiment were established.  

Agent
Colony

Container

SMVC

Agents
Messaging 

Bus

Service 
Adaptation

Components

Service
Components

Sensory
Components

Actuator
Components

Administrator

Figure 5.9: Entity and Component Collaboration Diagram of the AAANTS 
Framework
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The  overall  collaboration  among  components/entities  of  the 

AAANTS framework is summarised in figure 5.9.   It should be 

emphasized that the system administrators only interact with the 

Agent  Colony  Container  and  SMVC  entities.  The  agents  are 

exposed to the rest of the components through the Agent Colony 

Container and the Messaging Bus.  The agents also interact with 

the services embedded in the external  environment  through the 

Messaging Bus.  There is loose coupling among the container and 

the distributed service components due to the separation created 

by the messaging bus.

5.6.5 Implementing the Grid World

The  conceptual  architecture  of  the  Grid  World  experiment 

implementation  setup  is  depicted  in  Figure  5.10.   The 

implementation  architecture  is  composed  of  two  key 

implementation elements, namely, the grid world simulator and the 

AAANTS framework.  The grid world simulator is integrated with 

the AAANTS framework through a communication layer.  Hence, 

the agents and the simulator exchange message based information 

through the communication layer.  The messages are exchanged in 

XML format  and segmented into  two variants,  namely,  sensory 

messages and actuator messages.  The actuator messages are sent 

from the agents to the simulator and sensory message sent vice 

versa.  Both of these messages could be clearly identified based on 

the subject of the message defined in the message header.  This 

aspect is clearly described in Section 5.4.
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Communication Middleware (Messages related to Sensations and Actuations )

AAANTS
Agent Framework

Grid World Simulator Front-End

Goal

Agent

Obstacles

Figure 5.10: Grid-World Simulator integration with the AAANTS framework

Both the grid simulator and the agent framework were developed 

on  a  multi-threaded  platform,  hence  facilitating  concurrent 

execution.  The simulator possess all the routines required to create 

agents,  move  agents  from  one  cell  to  another,  sense  the 

neighbourhood  characteristics  and  change  the  obstacle 

arrangement.  These routines could be invoked from the outside 

entities  using  well-defined  APIs.   Consequently,  these  APIs 

interface  the  agents  of  the  AAANTS  framework  with  the 

simulator.  The advantage of such modularisation is quite evident 

in the software industry when building generic design patterns.

5.6.6 Integrating  a  Robotic  Arm  to  the  AAANTS 

Framework

There  are  two  aspects  to  this  implementation:  structural 

construction  of  the  standalone  robotic  arm  and  building  the 

interface to the AAANTS platform.  The structural construction of 

the arm is conceptually depicted in Figure 5.11 and some aspects 

of the actual implementation in Figure 5.12.  The arm has three 
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joints  (J1,  J2  and  J3)  and  each  joint  consist  of  a  motor  and  a 

rotation sensor.  The rotation sensor could simultaneously sense 

the angular change while moving a joint.  
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Figure 5.11: The conceptual design of the Robotic Arm

Joint 1 (J1)

Joint 2 (J2)

Joint 3 (J3)
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Target Object
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Figure 5.12: Robotic arm implementation using Lego Mindstorms Kit
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The interface aspects to the AAANTS framework is controlled and 

monitored  by  programs  that  run  on  the  robotic  controller 

constructed from a Robotic Kit known as the Robotic Invention 

System19.  The robotic controller could be described as the nervous 

system  of  the  robotic  arm  and  the  real  brain  activity  happens 

within the AAANTS platform.  The robotic controller has 3 motor 

sockets  and 3  sensory  sockets  which  connect  to  the  respective 

sensors and actuators of each joint using jumper wires.

The brick controller program (BrickController.java) executes on an 

open source kernel called as Lejos [ANDE01].  Lejos consists of 

Java  libraries  that  help  to  control  its  peripherals  while 

communicating with the parent program on the host using infrared 

signals.  The author has also initially experimented with NQC (Not 

Quite  C)  language  using  Operational  Codes  of  the  Lego Brick. 

The  Java  (Lejos)  based  solution  was  considered  superior  in 

technology as well as in design when compared to the latter.

5.7 Chapter Summary

This chapter concentrated on the implementation aspects of the 

AAANTS agent platform.  A new agent platform was developed to 

realise the objectives of the research since the existing platforms 

required  considerable  adaptations  and  enhancements.   The 

AAANTS implementation  was  able  to  generate  satisfactory  test 

data to justify usefulness of the AAANTS theoretical model.

19 Robotic Invention System 1.5 and 2.0, belong to the core set of the Lego Mindstorms product range 

introduced and marketed by The LEGO Group.  
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The  architecture  of  AAANTS  took  into  consideration  the 

characteristics of the existing agent architectures and best practices 

of  software  design patterns.   The  architecture  is  based on a  3-

layered design which facilitated modularisation to a great extent. 

Some of the major components of the AAANTS architecture are 

distributed  services,  messaging  middleware  and  agent  colony 

containers.

The  AAANTS  agent  architecture  was  mapped  to  an 

implementation model based on the Java platform.  The richness 

of the language, APIs and acceptance was very useful in realising 

the conceptualised AAANTS framework within a short period of 

time.   The  generic  AAANTS  implementation  was  extended  to 

facilitate the two primary experiments of this research:  the Grid 

World navigation for foraging and Robotic Arm movement.  The 

extension  of  the  AAANTS  implementation  for  these  two 

experiments justified the generalization of the framework.
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6.1 Introduction

During initial stages of the research it was attempted to implement 

the  AAANTS  model  using  popularly  accepted  agent  platforms 

such  as  Zeus  [COLL99]  [NWAN98],  Jade  [BELL03]  and 

Grasshopper [BAUM00].  These platforms were very useful during 

initial modelling phases, however as the research progressed, the 

restrictions  (discussed  in  section  5.1)  of  these  frameworks 

prompted the author to create a generic, though native framework 

to achieve the required experimental  flexibility  of  the AAANTS 

model.  The initial lessons learnt became stepping stones to arrive 

at the finally crystallised platform described in Chapter 5.

The rest  of  the chapter  focuses on a range of experiments that 

were conducted to assess the capabilities of the proposed model in 

realising the research objectives.

6.2 Experimentation Methodology

Two experimental domains were explored to evaluate whether the 

AAANTS model  delivers  the  objectives  of  this  research.   The 

experimentation  domains  were  foraging  in  a  grid  world  and 

optimising the movement of a robotic arm with three joints.  An 

orthogonal objective of using two domains of experiments was to 

evaluate  the  reusability  of  the  proposed  model  in  relation  to 

various learning situations.

The  primary  experiment  was  to  develop  an  environment  to 

simulate  foraging  activities  of  insects.   The  food  collecting 
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behaviour  of  insects  called  as  foraging  is  a  popular  domain  of 

experimentation  among  the  researchers  of  collective  intelligence 

[HOLL90].  Further, the experiments related to a grid world where 

agents are supposed to transit through states with the objective of 

finding the optimum path in reaching a defined goal have been 

popular among the artificial intelligence community for years.  The 

original  grid  world  problem  was  enhanced  to  include  foraging 

related aspects to the simulation.  Key control variables and their 

configurations for different experiments are listed in Table 6.1.
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Variable 

Description

Ex 1 –

Sc 1

Ex 1 –

Sc 2

Ex 2 –

Sc 1

Ex 2 –

Sc 2

Ex 3 –

Sc 1

Ex 3 –

Sc 2

Grid Size 10 x 5 10 x 5 10 x 5 10 x 5 10 x 5 10 x 5

Obstacle 

arrangement

Constant Constant Constant Constant Constant Constant

Characterises of 

agents

Constant Constant Constant Constant Constant Constant

Learning 

algorithm

MC MC MC MC AAANTS AAANTS

Number of 

agents

1 1 2 4 4 4

Number of 

search threads

1 1 2 4 1 1

Reward 

distribution

Equal Dispro-

portionat

e

Dispro-

portionat

e

Dispro-

portionat

e

Dispro-

portionat

e

Dispro-

portionate

Look-ahead 1 Step 1 Step 1 Step 1 Step 2 Step 2 Step

Shared memory 

context

No No Yes Yes Yes Yes

Implicit 

communication

No No Yes Yes Yes Yes

Use of action 

templates

No No No No Yes Yes

Knowledge 

Representation

Individua

l

Individual Shared Shared Shared Shared

Initial state 

initialisation

Random Random Random Random Random Random

Exploration 

probability and 

rate of reduction

Constant Constant Constant Constant Constant Constant

Table 6.1: Control variable summary across all grid-world experiments

There are many flavours of reinforcement learning methods such 

as Monte Carlo (MC), Dynamic Programming (DP) and Temporal 

Difference  (TD)  [SUTT98a].   Each  of  these  methods  have 

advantages and disadvantages based on the domain of application. 

It is considered that MC methods scale better with respect to state 

space size than standard, iterative techniques for solving systems of 
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linear  equations  [BART94].   Further,  an  MC method  does  not 

require explicit knowledge of the transition matrix of the problem 

domain  [BART94].   Hence,  MC  method  was  selected  as  the 

reinforcement  learning  algorithm  for  the  experiments  of  this 

research due to the above stated uniqueness and also due to the 

similarity  in  concept  to  other  similar  reinforcement  learning 

methods.   Further,  the  fundamental  learning  algorithm  of  the 

AAANTS learning model was based on the MC method.

In  all  the  experiments,  the  exploration  probability  was  kept 

constant.   The  initial  exploration  probability  was  kept  at  0.99, 

which  thereafter  was  linearly  reduced  after  each  episode.   The 

reduction  rate  of  exploration  probability  hence  was  kept  at  a 

constant  across  all  the experiments.   Further,  a  uniform reward 

distribution strategy was adhered across all experiments except in 

the grid world experiment 1 scenario 1.  The reward distribution 

was performed episodically  while  keeping state values to ascend 

from home to destination, hence encouraging the agents to follow 

a  path  of  ascending  state  values  similar  to  the  effect  of 

pheromones in ants.

Subsequent  to the grid world experiment,  a  robotic  arm related 

simulation was configured using the AAANTS platform.  In this 

experiment,  a  group  of  three  agents  controls  a  robotic  arm 

constructed with three joints to perform basic human upper limb 

behaviour.   Each  joint  is  equipped  with  a  motor  and an  angle 

sensor to control the movement.  Each joint is controlled by an 

agent who is capable of rotating the rod attached to the respective 

joint in a single plane within a 90 degree limit.  The joints were 
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designed to move in sequence from J1, J2 through J3, followed by 

bulk reinforcement for the overall behaviour.  The initial position 

of the arm is fully stretched to have 180 degree angle among joints 

and the overall arm to be 90 degrees in relation to the target object.

Q1

Q2

Q3J1

J2

J3

Fixed point

Elbow

Wrist

Shoulder

Figure 6.1: Conceptual Model of the Robotic Arm Model with 3 degrees of 
movement

The agents have the capability to instruct a specific joint to move 

at  a specific  angle (e.g.  Q1, Q2 and Q3 – Figure 6.1) using the 

respective  motor  and  angle  sensors.   Hence,  by  applying  the 

angular movement to these 3 joints, the overall arm could be used 

to grab, push or myriad of other movements.
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Variable Description Experimental Values

No of Joints 3

Obstacle arrangement Constant

Characterises of agents Constant

Learning algorithm AAANTS

Number of agents 4

Reward distribution Disproportionate

Look-ahead 2 Step

Implicit communication Yes

Exploration and Exploitation Strategy Constant

Use of action templates Yes

Knowledge Representation Shared

Initial state initialisation 90 degrees from the target object

Exploration probability and rate of 

reduction
Constant

Table 6.2: Control variable summary across all robotic arm experiments

The  reinforcement  for  a  complete  three  joint  movement  is 

calculated  by  an  algorithm  that  takes  the  two  dimensional 

proximity  of  the  wrist  joint  to  that  of  the  target  object.   The 

reinforcement is given as a single value to the overall outcome of 

the 3-joint movement and thereafter distributed to the respective 

agents.   Key  control  variables  and  their  configurations  for  the 

experiment are listed in Table 6.2.

6.3 Foraging in a Grid World

The  grid  world  experiment  was  designed  to  evaluate  the  core 

objectives  of  the  research related  to  emergence,  innateness  and 

implicit  communication.  The experiments were designed to test 

each aspect of the hypothesis which would be discussed in each 

respective  section.   The  subsequent  sections  would  explain  the 
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design of the grid-world simulation followed by the details of the 

experiments. 

6.3.1 The Simulated Grid-World Environment

A grid world is an area with a restricted boundary as depicted in 

Figure  6.2.   At  a  given  instance  there  could  be  one  or  many 

participants  within  the  grid  that  may  perform  state  transitions 

either to reach the destination Food Source (FS) which is the goal 

state or else to return back to the nest with the already captured 

food  elements  after  reaching  the  goal  state.   Each participating 

agent is analogous to an ant in a colony.

A grid world could be experimented along several dimensions such 

as spatial, temporal and functional.  In terms of spatial aspects, the 

total grid is divided into small squares called as cells.  Most of the 

discussed experiments are based on a 10 x 5 grid, but the same 

experiments  were  performed  on  20  x  30  and  30  x  40  grid 

environments to assess the scalability.  The movements within the 

grid are done on temporal clock cycles and the main functions of 

agents are searching and transporting food.  The grid and obstacle 

layouts  are  totally  configurable  using  the  grid  world  simulator 

front-end application.

The  participants  could  travel  from  one  cell  to  another  in  a 

horizontal or vertical direction, but restricted in travel diagonally. 

A single participant could inhabit a cell at a time during the search 

stage, though several may travel together while transporting a food 

unit  collectively.   However,  there  could  be  some  cells  that  are 
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obstructed and impassable by the agent to make the foraging task 

more realistic.

Food units

Ants returning to 
nest

Ants searching for 
food

Optimum path to 
food source

Optimum path to 
nest from the FS

Nest (home)

Food Source 
(Goal)

Restricted Cells 
(Obstructions)

Cell

Grid Boundary

Figure 6.2: Grid world model for the ant foraging simulation

The grid world contains  a single  cell  representing  the Nest (the 

home position) of the ants and another cell representing the food 

source  (FS).   The  location  of  FS  is  called  as  the  “goal”.   The 

objective of the participants would be to find and transport the 

food items from the goal position to the nest.  The effectiveness of 

the participants is gauged by the optimisation of movement during 

the iterative foraging behaviour.  The simulator is developed in a 

configurable  manner  so  that  the  dynamics  of  the  grid  world 

discussed above could be adjusted based on the requirements of 

the experiments.
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Figure 6.3: Grid state naming convention

The participating software agents capture state characteristics with 

respect  to  the  neighbouring  cells  in  the  grid  world.   The  cell 

characteristics may convey different semantics to different agents if 

a standard nomenclature is not adopted.  Hence, a neighbouring 

cell naming convention was adopted to uniquely identify each cell 

within  the  community.   Cells  are  referred  with  respect  to  the 

originating  cell  using  X and Y coordinates.   Each cell  has  four 

neighbours  and  could  be  referred  using  a  simple  formula  that 

increments and decrements the values of X and Y coordinates as 

depicted in Figure 6.3.

6.3.2 Grid World Experimental Guidelines

The  guidelines  that  are  applied  to  the  entire  set  of  grid-world 

experiments could be described along the following aspects.

1. Each participating entity in the grid is  represented by a single 

agent instance within the AAANTS framework.
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2. The overall agent behaviour within the grid could be segmented 

to food search and transportation activities.

3. Agents  possess  inherent  capabilities  to  perform the  following 

actions.

a. Search/Move from cell  to  cell  in  four directions  -  up, 

down, left and right.  Always the boundary of the grid has 

to  be  checked  before  committing  to  any  type  of 

movement.   The  search  mode  is  dominated  by  two 

techniques,  namely  exploration  and  exploitation.   The 

exploration and exploitation behaviour in experiment 3 is 

based on the procedure as explained in chapter 3.  The 

exploitation search is related to the movement to the next 

cell inline with the strategies listed in section 4.3.  Hence, 

exploitation uses heuristics based on past reinforcements 

to decide on the best possible movement.  

The  other  opposing  search  mode  is  exploration  which 

uses a stochastic approach.  When adapting a stochastic 

approach, the search mechanism could be called as a blind 

search  where  the  next  selection  of  state  becomes 

unpredictable.   The  search  approach  uses  a  mix  of 

exploration and exploitation modes  which  initially  gives 

higher preference to exploration and thereafter moves the 

preference inclined towards exploitation.  The probability 

of using these two modes could be configured using the 

SMVC.   For  all  of  the  experiments,  the  exploration 

probability  was  initialised  at  95%  which  was  linearly 
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reduced  subsequent  to  each  episode,  which  results  in 

using higher probability of exploitation after considerable 

amount of episodes.

b. Pick food from the FS.

c. Carry food while moving from goal to home.

d. Drop food at a location.  This could be done before or 

after  reaching  the  destination.   Dropping  food prior  to 

reaching  the  destination  is  related  to  reaching  a  higher 

level  of  collective  behaviour  by  segmenting  overall  grid 

into controllable segments.

e. Sense of direction from source to destination.  This is 

done through a simple gradient calculation.  Further, the 

sense of direction should be improved to calculate with 

reference to other objects found in the environment.  A 

simple formula to calculate the direction would be to use 

the following: D = |δy|/|δx|.  The direction described is 

calculated among two fixed points: nest (Home) and food 

source  (Goal).   There  could  be  situations  where  these 

fixed points may change during a single execution cycle of 

episodes  within  the  grid  world.   Therefore,  when 

origination  point  changes,  agents  should  be  able  to 

recalculate the new direction based on the ratio difference 

of the latter to the former.

4. The search aspect of an agent is summarised below.
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a. Individual agents start from the nest and move from cell 

to cell in search of the FS.

b. An  agent  reaching  the  FS  would  receive  a  reward 

proportional to the strength of the source, e.g. finding a 

FS with larger  food item density  would generate higher 

rewards than a FS with low food item density.

c. The agents should be able to perform the search function 

collectively.   The  agents  could  disperse  to  different 

segments of the grid and the first to reach the goal should 

implicitly communicate to others.

d. After  initially  locating  food,  agents  should  be  able  to 

determine  the  direction  of  food  respective  to  the  nest. 

This  could  even  be  communicated  to  other  agents  – 

implicitly.

5. The  transportation  of  food  items  from the  FS to  the  nest  is 

summarised below.

a. The  agents  that  reach  the  FS  should  execute  following 

actions in sequence – pick, carry and drop.

b. Transportation could also be done collectively where part 

of the colony may drop food halfway along the path to the 

nest  and the  rest  of  the agents  may adapt  to transport 

from that  point  onwards.   It  is  of  interest  to  find  the 

efficiency of collective behaviour against individual effort 

of transportation.
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c. The return path to the nest need not necessarily overlap 

with that of the reaching path.  Since the search path may 

be  the  relative  optimal  path  from  nest  to  the  FS,  the 

return path too could align with the reaching path though 

not in an overlapped manner.

6. When an agent reaches the goal state an episode ends, whence 

the system releases a reward value to be distributed among the 

states that contributed to reach the goal.  The rewards could be 

distributed in an equal manner or ascending manner from source 

to destination.  The value of a state ( sV ), when proportionately 

distributed  is  calculated  using  the  formula  (6.2).   The  same 

rewarding mechanism would happen when reaching the home 

state; however, the states maintain these two types of rewards in 

differentiated variables.   This  would make sure that  the agent 

would refer the correct state values based on the current goal.

)2.6(.
)*( −+=

C
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(Where R: Final Reward, F: Food Units at the goal, C: No. of states to reach goal from 

home location)

When  calculating  reward  per  state  disproportionately,  the 

formula 6.2 is slightly modified to multiply by a reciprocal based 

on the distance of each of the states in the converged path to the 

goal state.

6.3.3 Grid Experiment 1 – Single agent foraging

This  experiment  was  done  as  a  reference  experiment  to  the 

AAANTS model.   This  experiment  involves  a  single  agent  that 
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search  for  a  FS  from  a  fixed  home  location.     The  learning 

methodology  is  based  on  Monte-Carlo  algorithm  and  the 

experiment  is  void  of  any  type  of  inter-agent  coordination 

mechanism.    The single agent that traverses the grid throughout 

the  experiment  could  be  called  as  the  sole  contributor  for 

recognising the optimal path.  The experiment is also void of any 

type  of  shared  memory  and  implicit  communication.   The  key 

emphasis  is that the inter-agent communication is absent in this 

experiment  and is  used  as  the control  experiment  to gauge the 

effectiveness of the proposed coordination model.

6.3.3.1 Scenario 1: One Step Look-Ahead Policy using Monte Carlo 

(MC) Method with Proportionate Reward Distribution

This is a control experiment based on the traditional reinforcement 

learning technique of the Monte-Carlo method.  The results of this 

experiment  would  be  subsequently  compared  with  that  of  the 

AAANTS model.  In this scenario an agent uses the Monte-Carlo 

based  reinforcement  learning  method  with  a  mixture  of 

exploration and exploitation strategies.  All states are initialised to 

an  identical  value and the state  transition is  based  on the state 

values ( sV ) of the four neighbouring (left, right, top and bottom) 

cells.  In this experiment, one step look-ahead of adjacent states 

were performed though in most MC applications  multiple look-

ahead is done similar to the Dynamic Programming methodology. 

The uniqueness of this experiment is that the reward distribution is 

done in a proportionate manner.
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The adaptive algorithm of experiment-1: scenario-1 is  as follows:  (The 

Exploration  Quotient  (EQ)  refers  to  the  probability  of  exploration 

allowed within the community)

Initialise all the states to identical values

Agent transit to states until goal reached {

Decide whether to Explore or Exploit based on the randomness 

and EQ

if (Exploration Selected) {

Perform state transition based on a random algorithm

}

else  {

List the highest valued state from the neighbours

if there are many states with equal state values

then, randomly explore and transit to a state out 

of the selected

else if a leading state with the highest value is found, 

then, move to the state with highest value

}

Change/Reduce EQ

}

This  experiment  was  performed  using  a  single  agent  for  static 

arrangement of obstacles.  For each episode the number of steps 

to reach the goal is tabulated, and further all the state values of the 

10 x 5 grid are tabulated after reaching 100 episodes.  The Figure 

6.4 depicts the average number of transitions taken to reach the 

goal state over 40 episodes.
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Figure 6.4:  State transitions  using single agent  scenario with equal  rewards 
distribution among states

The Figure 6.5 depicts the state values of the 10 x 5 grid after 40 

episodes  based on one-step look-ahead MC method.   The state 

value  arrangement  in  this  figure  shows  one  peak  local  optima 

where  as  the  repetitive  experiments  conducted  with  different 

arrangements  of  obstacles  and  grid  sizes  (20  x  30  & 30  x  40) 

resulted in various patterns of state value distributions with evident 

multiple local optima.  It was observed that in most experiments 

the agents get trapped in local optima without ever reaching the 

goal state.
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Figure 6.5: Reward distribution among 10 x 5 grid world using a single agent 
on MC 1 step look-ahead

The  effectiveness  of  a  learning  method  is  based  on  the 

improvement  of  the  expected  behaviour  over  a  period  of  time 

while iteratively being reinforced from the environment.  In this 

context, the number of transitions to reach the goal state should 

reduce  over  a  period  of  time.   However,  with reference  to the 

collected data (Figure 6.4) such improvement is not evident from 

the results of the experiment. This learning method was not able to 

accurately converge on an optimal path to the goal state. 

6.3.3.2 Scenario 2: Disproportionate Reward Distribution among the 

Participating States

The objective of this experiment is to evaluate the capability of an 

agent  to  exploit  a  path  with  an  incrementing  gradient  of  state 

values when reaching the goal state.  This is similar to the varying 

concentrations of pheromones laid by the insects to demarcate the 

closeness to food sources.

The scenario 2 of experiment 1 is based on identical variables to 

that of scenario 1 which is primarily a Monte-Carlo reinforcement 

learning algorithm for one-step look-ahead goal search in the grid 

world.  Scenario 2 differentiates from scenario 1 primarily on the 

reward  distribution  mechanism  which  adopts  a  method  of 

allocating  rewards  disproportionately  among  the  states  that 

contribute  in  an  episode  to  reach  the  goal.   A  higher  reward 

proportion is given to states closer to the goal state and lesser to 

the states near the home location, hence in a descending manner. 
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Consequently,  a  decreasing  trail  of  rewards  is  assigned to states 

from the goal state to the home state.  The reciprocal of the above 

distribution mechanism is applied to rewards given when reaching 

the home state, however, stored in a separate variable in each state. 

Figure 6.6: State transitions using a single agent with disproportionate reward 
distribution function

The scenario 2 algorithm demonstrates considerable improvement 

over the former (scenario 1) in converging to an optimum path. 

This is evident with reference to Figure 6.6, where the number of 

transitions to reach the goal state considerably reduces during the 

initial episodes.
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Figure 6.7: Reward distribution among 10 x 5 grid world using a single agent 
on MC 1-step look-ahead

The reward value distribution among neighbouring states  shows 

clear concentration along the optimum path from home to the goal 

(Figure 6.7).  The probability of generating local optima based on 

this method was relatively low; however, there were few situations 

of  local  optimality  based  on  different  obstacle  arrangements. 

During some episodes it was noticed that the agent randomly gets 

stuck in local optimal situations.  This kind of behaviour was not 

that  prominent  when considering  the entire  set  of  experiments, 

though it gives a clear indication that the methodology could be 

further improved.  The experiment was extended by changing the 

goal state after convergence and further obstacle arrangement of 

the  grid.   Scenario  2  shows  some  level  of  tolerance  to  these 

changes whereas scenario 1 was unable to handle these situations 

in most occurrences.

6.3.4 Grid  Experiment  2  –  Cooperative  Foraging  Using 

Monte-Carlo Method

This is the second control experiment conducted to compare the 

capabilities  of  the  AAANTS  model.   The  objective  of  this 
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experiment  is  to evaluate the effect  of  concurrency and implicit 

communication to the standard Monte Carlo algorithm.  The scope 

of this experiment is similar to experiment 1, but with the inclusion 

of several agents foraging concurrently and further adhering to the 

disproportionate  reward  distribution  method  throughout  the 

experiments.  The reinforcement learning is based on the Monte-

Carlo  algorithm with  1-step  look-ahead  which  is  similar  to  the 

former experiment.

The  enhancement  in  this  experiment  is  that  the  reinforcements 

received  by  all  participating  agents  are  maintained  in  a  shared 

context.   This  shared  context  ensures  that  experiences  of  each 

participant complement the others in the community in an implicit 

manner.  Any improvement related to implicit coordination could 

be  detected  by  comparing  results  of  this  experiment  with 

experiment 1 scenario 2.

6.3.4.1 Scenario 1: 2-Agent Cooperative 

In this scenario, two agents were released concurrently to the grid 

environment.   The  agents  make  sure  they  do  not  come  into 

overlapping  states  concurrently.   A grid  cell  locking  mechanism 

was  used  for  this  purpose.   It  was  observed  in  comparison  to 

experiment 1 scenario 2 that the number of state transitions within 

an  episode  reduces  as  the  two  agents  complement  each  other 

through  the  shared  context  of  reinforcements  and  the  agents 

converged  to  an  optimal  path  in  a  relatively  lesser  number  of 

episodes (Figure 6.8).  Hence, the rewards given to one agent has 

an  effect  on  the  other,  despite  a  lack  of  direct  communication 

Page 200 of 352



Chapter 6 –Simulations and Experiments

among the participants.  A satisfactory level of improvement was 

gained with respect to a single agent contribution. 

Figure 6.8: State transitions of two agents in a cooperative mode

The rewards distribution depicted in Figure 6.9 shows convergence 

to  the  goal  state  in  a  gradual  manner  with  more  exploration 

considered than the single agent scenario of experiment 1.  This 

level  of  reward  distribution  is  very  important  to  overcome 

situations of getting stuck in local optima.  
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Figure 6.9: Reward distribution in a 10 x 5 grid world based on activities of 
two agent cooperative scenario

However, this approach has more tendencies to create local optima 

when compared to the approach taken in experiment 1 scenario 2. 

This is evident from the comparison of reward distribution of the 

two  approaches.   However,  there  is  clear  improvement  when 

compared to experiment 1 due to the low number of episodes taken 

to converge to the optimal path.

6.3.4.2 Scenario 2: 4-Agent Cooperative 

This experiment is very similar to scenario 1 of experiment 2, with 

the  difference  being  the  use  of  4  agents  instead  of  2.   The 

assumption  being  that  due  to  increase  in  concurrent  search 

capabilities,  the number of episodes  to reach the optimum path 

should be improved.

Figure 6.10: State transitions of 4 agents in a non-cooperative mode
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The  assumption  was  justified  when  comparing  data  depicted  in 

Figures 6.10 and 6.11 where the two agent scenario achieves the 

optimum solution after  an average of 40 episodes  and the four 

agent  scenario  after  35  episodes  on  average.   However,  the 

proportion  of  increase  in  agents  does  not  correlated  to  the 

decrease in the episodes for convergence.

Figure 6.11: Reward distribution among 10 x 5 grid world after activities of 4 
agent cooperative scenarios

The comparison of reward distribution values in Figures 6.10 and 

6.11 reveals the presence of more exploration activities in scenario 

1 than in scenario 2.  Therefore, though scenario 2 achieves the 

optimum path in lesser iterations, there would be less time spent 

on  exploration  as  the  number  of  agents  increase.   Logically,  it 

agrees to the fact that when the amount of agents increases, each 

agent  tends  to  use  guidance  of  others  and  spend  less  time  on 

exploration.  Therefore, these two experiments suggest that there 

should be a proper balance of the number of agents based on the 

complexity of the environment.
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6.3.5 Grid Experiment 3 – Collective Foraging Based on 

the AAANTS Model

The  final  set  of  experiments  was  conducted  to  evaluate  the 

capabilities of the AAANTS model when compared to the Monte-

Carlo method. As discussed in chapter 3, AAANTS model uses a 

combination  of  concepts  based  on  emergence  heuristics,  ATs, 

behavioural  concentres,  hub states,  temporal sensory frames and 

reinforcement  learning  methods.   The  expectation  is  that  the 

learning outcome of the AAANTS model should out perform the 

traditional  methods  such  as  the  Monte-Carlo  method.   The 

experimental  variables  were  kept  constant  across  experiments 

other  than  the  specific  aspects  of  the  algorithm unique  to  the 

AAANTS model.

6.3.5.1 AAANTS Experimental Guidelines

This experiment was conducted along the following guidelines to 

align with the objectives of the research.

1. The  AAANTS  model  uses  a  learning  strategy  based  on 

reinforcement  learning  (Chapter  4)  to  implement  the  adaptive 

nature of agents. The MC method used in the previous two control 

experiments  was  adjusted  as  discussed  in  chapter  4  to  suit  the 

needs of the AAANTS model.   The episodic rewards generated 

were distributed disproportionately among the participating states 

and  were  assigned  in  descending  order  from the  goal  to  home 

location – similar to the varying concentrations of pheromones in 

insects.   The  state  values  are  modelled  in  a  shared  context 

accessible to all participating agents of the grid world.
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2. The agents perform state transitions in the grid world by evaluating 

the best possible state from the four neighbours.  This is called as 

1-step  look-ahead  and  was  the  basis  for  all  the  prior  control 

experiments  conducted.   The  AAANTS  model  introduces  the 

concept of ATs where there could be several actions executed and 

reinforced together by a community of agents.  Hence, depending 

on the number of actions in the AT the agents could do multi-step 

look-ahead and each of these actions within an AT is contributed 

by  the  coordination  of  several  agents.   This  experiment  uses 

templates  of  different  number  of  actions;  therefore  the  agents 

perform state value evaluation based on the number of actions in 

the template.  For example, if there are 2 actions in the AT, an 

agent performs two-step look-ahead of all  possible  states  that it 

could reach and based on the highest possible reward expectation 

executes the two actions in sequence to reach the next state.

3. The AAANTS model uses the concept  of Hubs as described in 

Chapter  3.   Hubs  are  highly  connected  states  that  amalgamate 

heterogeneous  regions.   The  reward  sharing  model  of  agents 

identifies the Hub states from the rest of the states and uses them 

to converge to the optimum path.  The hubs are demarcated by 

states  that  are relatively high in reward value and also could be 

somewhat similar to local optima states.  Hence, the local optima 

states  in  the  AAANTS  model  could  be  used  to  improve  the 

experimental  outcomes.   The Hub states  could be hierarchically 

arranged as depicted in figure 4.2 based on the rewards from the 

environment.
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4. These two experiments would demonstrate the capabilities of the 

AAANTS model in relation to the emergent nature of behaviour. 

Though there were several agents in experiment 2, they were only 

coordinated through implicit coordination to individually achieve 

goals whilst sharing information of the shared context.  They did 

not  coordinate  the  movement  of  a  single  entity  from home  to 

destination.   The  AAANTS model  based  experiments  uses  the 

multiple agents to coordinate the actions of the ATs that belong to 

a single entity that moves within the grid.

5. An  agent  could  sense  the  environment  with  respect  to  each 

residing  cell  within  the  grid.   The  listed  experiments  have 

considered a 3 x 3 matrix of cells surrounding and including the 

inhabiting cell of an agent.  Five clustering centres were selected as 

the ideal after initial series of experiments.  Each cell has two state 

values, one related to reaching the food source and the other for 

reaching the home while carrying food.  The data values of the 3 x 

3 matrix are used to compose a Temporal Sensory Frame unique 

to each location in the grid (discussed in section 3.4).  The use of 

TSF for navigation is only used in experiment 3 which is based on 

the AAANTS model.  

6. The ATs, sensory templates and agent instances assigned to ATs 

are  configured  using  the  CDT  components  of  the  AAANTS 

framework.  First, the list of AAs was defined for the grid-world 

experiment.   The  four  movements  that  were  identified  as 

important  to  this  experiment  were  up,  down,  left  and  right. 

Thereafter, altogether eight ATs were defined.  Scenario 1 used six 

ATs using four agent instances and scenario 2 used all eight actions 
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using same number of agent instances.  The agent instances were 

also defined using the CDT and activated using the SMVC.  The 

agents migrate from inactive to active state (described in section 

3.2 using figure 3.1) when instructed by the SMVC and thereafter 

becomes  autonomous  until  optimum  path  is  reached.   After 

reaching the optimum path, the agents converge to a static path, 

especially  after  exploration  probabilities  gracefully  degrade. 

However,  SMVC has the capability  to alter  the exploration and 

exploitation blend even during the experiments.   Further, all the 

experimental data are captured through the SMVC.  

6.3.5.2 Scenario 1: 4-Agents Using an Action Template of 2 Actions 

with 6 ATs

This experiment uses an AT with 2 elementary actions each action 

with 4 possible movements.  Each of these actions are coordinated 

by an agent, hence the experiment require four agents to move a 

search  node  from source  to  destination  since  a  single  agent  is 

responsible for a particular type of action.  Six instances of ATs 

were created from the use of AAs related to Forward, Backward, 

Left  and  Right.   These  instances  were  {Forward,  Forward}, 

{Forward, Left}, {Forward, Right}, {Backward, Left}, {Backward, 

Right} and {Backward, Backward}.  The rest of the experimental 

method is as per the guidelines listed in section 6.3.5.1.  However, 

the overall guidelines listed in section 6.3.2 are applicable to both 

scenarios of experiment 3.
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Figure  6.12:  State  transitions  of  2-agent  cooperative  scenarios  across  3 
experiments with an action template with one action

A considerable improvement was gained in this experiment with 

reference to the MC based control experiments (experiments 1 & 

2).   Three iterations of the same experiment were conducted to 

gain  a  general  consensus  of  the  approach  where  all  three 

experiments demonstrated a relatively similar optimisation pattern 

(Figure 6.12).

Figure 6.13: State value distribution among 10 x 5 grid world after activities of 
2 agent cooperative scenarios with action template with one action
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The use of hubs becomes very obvious with reference to reward 

distribution in figure 6.13.  There are two state values peaks in the 

graph  and  the  secondary  peak  with  relatively  lower  value 

concentration could be considered as a hub state.  It could also be 

mistaken as local optima based on the slope towards the goal state 

but based on the arrangement of the obstacles the secondary peak 

serves as a guiding path, technically a hub state within the grid.  It 

was noticed that even when obstacles were rearranged, the position 

of  the  hub  state  changes  accordingly  to  connect  heterogeneous 

regions separated by the obstacles.

6.3.5.3 Scenario 2: 4-Agents Using an Action Template of 2 Actions 

with 8 ATs

This experiment uses an AT with 2 elementary actions each action 

with 4 possible  type of  movements.   Each of  these  actions  are 

coordinated by an agent, hence the experiment require 4 agents to 

move a search node from source to destination since a single agent 

is responsible for a particular type of action.  Eight instances of 

ATs  were  created  from  the  use  of  AAs  related  to  Forward, 

Backward,  Left  and  Right.   These  instances  were  {Forward, 

Forward}, {Forward, Left}, {Forward, Right}, {Backward, Left}, 

{Backward,  Right},  {Backward,  Backward},  {Left,  Left}  and 

{Right, Right}.

The rest of the experimental method is as per the guidelines listed 

in section 6.3.5.1.  However, the overall guidelines listed in section 

6.3.2  are  applicable  to  both  scenarios  of  experiment  3.   The 

objective  of  this  scenario  is  to  investigate  whether  there  is  an 

improvement due to the increase in the available possibilities  of 
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movement (related to increase of ATs from six to eight).  It was 

observed that the number of episodes to reach the optimum path 

was reduced further in relation to the results in scenario 1 (Figure 

6.14).   

Figure  6.14:  State  transitions  of  2-agent  cooperative  scenarios  across  2 
experiments with action template with two actions

The important finding in this experiment was the presence of more 

hubs  in  relation  to  scenario  1  (Figure  6.15).   Based  on  these 

experimental results it should be noted that the presence of hubs 

(local  optima)  contributes  towards  better  convergence  when 

executing  the  AAANTS  algorithm  whereas  in  the  previous 

experiments, the local optima resulted in sub-optimal results.
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Figure 6.15: State value distribution among 10 x 5 grid world after activities of 
2  agent  cooperative  scenarios  with  action  template  with  two 
actions

According to Amy McGovern  et al [MCGO01], a bottleneck was 

described as a region in the observation space that an agent tends 

to visit frequently on successful paths to the goal.  It was identified 

that an option framework could be used to define sub-goals where 

an option is a temporarily extended action which, when selected by 

an  agent,  executes  until  a  termination  condition  is  satisfied 

[MCGO01].  The use of hubs within the AAANTS model could be 

directly attributed to the concept of bottlenecks that are defined as 

sub-goals used in reaching the goal.

6.4 Robotic Arm Experiment

The objective  of this  experiment  is  to evaluate whether  a static 

layer of innate behaviour could result in heterogeneous emergent 

behaviour.   The  experiment  is  designed  to  create  two types  of 

behaviour from a robotic arm with 3 joints by using the same set 

of  innate  ATs.   One expected  behaviour  is  the  grabbing  of  an 

object and the other is to push an object which is kept at the same 

distance from the base of the arm.
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6.4.1 Experimental Guidelines

The guidelines of the experiment are described below.

1. The robotic arm in the resting mode is stretched at an angle 

of 90 degrees to the target object.

2. The elbow and wrist joint is restricted to rotate 25 degrees 

with respect to the resting angle.  The rationale was that an 

angle  over  this  limit  contributes  to  practical  movement 

issues in relation to the robotic arm installation.

3. The  state  transition  of  the  grid  world  from  goal  to  the 

destination is mapped in a similar sense in this experiment. 

The wrist of the robotic arm is considered as the moving 

target similar to the movement within a grid from one cell 

to another.   The state that should be given the reward is 

based on the cells  that  overlap with the wrist  joint  while 

executing a particular AT.  An example of a specific AT is 

depicted in Figure 6.16.
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Action 1

Action 2

Action 3

Action 4

Idle

Home

Goal

Wrist

Elbow

Shoulder

 Figure  6.16:  Robotic  arm AT movement  with  reference to the  grid  state 
transitions

4. There  are  four types  of  elementary  actions  that  could be 

blended to achieve the goal state.

a. Shoulder move – positive degrees (up)

b. Elbow move – positive degrees (up)

c. Elbow move – negative degrees (down)

d. Wrist move – close to grad the object.

5. Eight  AT  instances  were  created  using  four  elementary 

actions for each AT.  Out of these ATs some are related to 

grabbing  the  object  and  the  rest  related  to  pushing  the 

object.
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6. Credit  /  Reward  assignment  was  done  subsequent  to 

executing the four actions in each AT instance.  The credit 

assignment is implemented in relation to the discussion in 

section 4.5.2.

6.4.2 Experiment Results

The expected result  of  the experiment  is  related to finding  the 

convergence  to  a  solution  rather  than  finding  the  optimum 

movement  to grab the object.   The convergence to a  solution, 

which is related to ultimately been able to both grab and push the 

target object would justify the capability of a static innate layer of 

elementary actions producing heterogeneous emergent behaviour. 

Figure 6.17: Results of the object grabbing experiment – scenario 1

The scenario 1 of the robotic arm experiments converges to grab 

the target object within an average of 16 episodes with reference to 

the figure 6.17.  Relatively high values of rewards were given to the 
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ATs that resulted in grabbing the object as opposed to pushing the 

object.   The overall outcome was inline with the reinforcements 

and in all  experimental  iterations  the  solution converged  to the 

grabbing of the object within 16 episodes.

The  scenario  2  of  the  experiment  was  conducted  on  the  same 

innate  layer  of  behaviour  (8  ATs),  but  the reinforcements  were 

aligned  to  the  pushing  of  the  object.   The  arm  movement 

converged  to  the  optimum behaviour  of  pushing  the  object  as 

opposed to grabbing the object within an average of 17 episodes 

(Figure 6.18).

Figure 6.18: Results of the object pushing experiment – Scenario 2

The experimental results confirm the ability of a static innate layer 

to produce heterogeneous behaviour based on the reinforcements 

from the environment.  The state values of the matrix described in 

6.4.1-item-3,  could  be  used  to  analyse  the  state  values  after 

converging to the optimal solution.  It was noticed that the local 
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optima of the state value show unique patterns for each respective 

movement. 

6.5 Overall Experimental Observations and 

Conclusions

The  following  sections  are  dedicated  to  summarise  the 

observations of all the experiments conducted within this chapter.

6.5.1 Observations of the Grid World Experiments

The following  observations  of  the grid  world  experiments  were 

identified as important to assess the hypothesis and objectives of 

this research.

1. When comparing results of  experiment 1,  scenarios  1 & 2,  it  is 

evident that disproportionate distribution of rewards among state 

values results in better convergence to the optimum path (Figure 

6.19).   The  disproportionate  distribution  is  analogous  to 

pheromone  distribution  of  insects  where  the  concentration  is 

maintained  in  an  ascending  rate  when  reaching  the  goal  state. 

Even  after  changing  the  location  of  the  goals  and  obstacles  in 

scenario 2, the algorithm was able to readjust the state values to 

converge to the new path within a reasonable number of episodes.
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Figure  6.19:  Comparison  of  average  episodes  taken  to  converge  to  the 
optimum path using the different learning strategies discussed

2. The  objective  of  the  experiment  2  is  to  evaluate  the 

effectiveness of implicit coordination methods using shared 

contexts  on  general  learning  algorithms  such  as  Monte-

Carlo.   Both  scenarios  of  experiment  2  showed 

improvements when compared to the results of experiment 

1,  which  the  latter  is  void  of  any  form of  coordination. 

However,  several more experiments were carried out with 

increased agent counts from one to ten.  It was noticed that 
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initial  gradual  improvements  fade  away  after  reaching  an 

optimum threshold of agents which was however variable 

based on the grid sizes.

3. Among all the Monte-Carlo based experiments (experiments 

1 & 2), the 4-agent cooperative method produced the best 

outcome (Figure 6.19).  This was a modification done to the 

original  Monte-Carlo  method  to  include  the  cooperative 

aspects  with  the  objective  that  it  could  be  compared  in 

similar grounds with the AAANTS model. 

4. Experiment  3  introduces  the  full  scale  features  of  the 

AAANTS  model.   It  introduces  the  capabilities  of 

emergence,  innateness  and  implicit  communication.   In 

experiment  3  a  key  difference  when  compared  to 

experiments 1 & 2, is that though there are multiple agents, 

there exists only one search thread at a time.  The multiple 

agents coordinate different elementary actions of the AT to 

navigate  a  single  search node from source to destination. 

An AT is executed based on inputs from the environment 

and each elementary action is contributed by a single agent.

5. The  results  of  the  experiment  3  out  perform  that  of 

experiments 1 & 2, and further demonstrate that capabilities 

improve  when  the  innate  layer  contribute  several  ATs  to 

survive in the environment.  Most suitable AT needs to be 

selected based on the sensation from the environment. 

6. Further, it was noticed that when the amount of obstacles 

were increased within the grid world, the AAANTS method 
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converges  considerably  faster  than  the  Monte-Carlo 

methods.   This  was  due  to  the  fact  that  AAANTS uses 

obstacle  characteristics  as  navigation  markers  during  the 

initial exploration process.  These obstacles were described 

as local-optima and specifically within the AAANTS model 

referred to as Hubs – special states that bridges regions of 

cells.  For example, when there is a pattern of receiving high 

reward for moving forward when a certain type of obstacle 

is in the neighbourhood, the agents detects these situations 

as  Hubs  and  adapts  to  executing  the  appropriate  AT 

whenever such situations were faced.  

Observations/

Experiments

Ex 1 –

Sc 1

Ex 1 –

Sc 2

Ex 2 –

Sc 1

Ex 2 –

Sc 2

Ex 3 –

Sc 1

Ex 3 –

Sc 2

Average number of states of the 

optimum path from source to 

destination

15 10 9 9 8 8

Presence of local optima Yes Yes

(relatively 

low)

Yes Yes Yes Yes

Stability after converging to the 

optimal path

No Mostly Mostly Mostly Yes Yes

Ability to reach the optimal path No Mostly Mostly Mostly Yes Yes

Minimum number of episodes to 

converge to optimum path

> 100 50-100 30-50 27-40 25-30 20-22

Ability to converge after 

adjusting the location of the 

goal subsequent to reaching 

convergence

No Mostly Mostly Mostly Yes Yes

Ability to converge after 

adjusting obstacle arrangement 

subsequent to reaching 

convergence

No Mostly Mostly Mostly Yes Yes

Table 6.3: Observation summary of the grid world experiments 

7. The  summary  of  the  experimental  outcomes  of  all  the 

experiments of the grid world domain is tabulated in Table 
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6.3.  It  could  be  stated  that  the  number  of  episodes  to 

converge  and  states  to  reach  the  goal  state  considerably 

reduces in the AAANTS domain.  The final outcome is very 

stable in the AAANTS model when compared to the rest of 

the control experiments.

Figure 6.20: Comparison of overall average episodes to converge in extended 
grid search spaces

8. Figure 6.20 depicts the results of experiments conducted on 

extended search spaces of 20 x 30 and 30 x 40 grid sizes. 

The experiment 2-4 agent scenario was taken to represent 

the  MC  learning  method,  which  is  actually  the  best 

performing  out  of  all  the  MC  experiments.   The  MC 

method  does  show  convergence  to  an  optimal  path, 

however,  the  overall  number  of  episodes  increases 

considerably  when  compared  to  the  AAANTS  learning 
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model.  Both experiments related to the AAANTS learning 

model show superiority in comparison to MC method.  Out 

of  the  two  AAANTS  experiments,  the  method  which 

contained higher number of ATs seems to converge with a 

relative lower number of episodes and further the ratio of 

increase is lower.  It could be concluded that the AAANTS 

learning model scales better in complex environments when 

compared to the MC method.  The experiments conducted 

on the same grid sizes with increased number of obstacles 

demonstrated even better results in favour of the AAANTS 

model in comparison to the MC method.

6.5.2 Observations of the Robotic Arm Experiment

As discussed earlier the objective of this experiment is to evaluate 

whether  a  static  innate  actions  could  result  in  heterogeneous 

emergent  behaviour.   It  was  observed  that  both  the  object 

grabbing  and  pushing  behaviour  emerged  from  the  8  ATs 

programmed in the innate layer. 
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Observations/

Experiments
Scenario 1 Scenario 2

Presence of local optima Yes Yes

Stability after converging to the 

optimal path
Yes Yes

Ability to reach the optimal path Yes Yes

Minimum number of episodes to 

converge to optimum path
16 17

Ability to converge after adjusting the 

location of the goal subsequent to 

reaching convergence

Yes Yes

Table 6.4: Observation summary of the robotic arm movement experiments

The two scenarios conducted converged to the expected emergent 

behaviour  and it  was  evident  that  based  on  the  reinforcements 

from  the  environment  an  innate  layer  could  produce 

heterogeneous emergent behaviour.  The summary of the overall 

experimental results are tabulated in Table 6.4.

6.6 Chapter Summary

This chapter provides an in-depth description to the experiments 

conducted within the AAANTS research.  The experiments span 

across  two  domains  with  the  objective  of  evaluating  the 

abstractness  of the proposed  AAANTS learning  model.   It  was 

evident  from  the  results  that  in  all  experiment  instances,  the 

proposed  model  shows  early  convergence  when  compared  to 

traditional learning methods such as the Monte-Carlo method.

The  grid  world  experiment  was  conducted  using  a  simulator 

program that could be configured for different grid sizes, obstacles 

Page 222 of 352



Chapter 6 –Simulations and Experiments

arrangements and number of agents.  The initial experiments were 

conducted on a 10 x 5 grid to shorten the experimental periods, 

but thereafter modelled on 20 x 30 and 30 x 40 grid sizes to detect 

any anomalies related to the increase in environmental complexity. 

Three  different  varieties  of  experiments  were  carried  out  to 

evaluate the objectives of the research.

The robotic arm experiment was conducted by an actual robotic 

arm built using a robotic kit.  The 3 joint robotic arm was fixed at 

the shoulder joint and the movement of the overall arm happen in 

4 step movements to either grab or push the target object.  The 

experiment was conducted using 8 ATs which contributes to two 

types of behaviour.  The experiments demonstrate the capabilities 

of the model in achieving heterogeneous behaviour using an innate 

layer of behaviour.
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7.1 Introduction

The  purpose  of  an  intelligent  entity  is  to  provide  the  most 

appropriate  and  preferred  behaviour  to  the  continuous  flow  of 

multi-modal  sensations  from  the  environment.   Decades  of 

research have contributed a breadth of strategies, methodologies, 

models and theories to this science of creating artificial intelligence. 

However, the world still awaits a major breakthrough in artificial 

intelligence research that could produce anthropomorphic levels of 

intelligence.   The best avenue to pick up any clues for research 

directions in artificial intelligence is most certainly where it started 

in the first place - the animal kingdom.  The research was inspired 

several  years  back  by  investigating  the  amazing  world  of  ants. 

Henceforth,  the  research  unravelled  itself  in  several  directions, 

though  not  deviating  from  the  core  objective  of  achieving 

emergent behaviour as a result of collective implicit interactions of 

simple entities.

7.2 Research Approach Summary

The  study  conducted  during  the  initial  phase  of  the  research 

related to intelligent systems that are both natural and artificial in 

nature  instilled  the  identification  of  three  aspects  that  are 

paramount  for  realising  intelligence.   They  are  coordination, 

adaptability and representation, which would be referred to as the 

AI Mix.  The first agenda of the research was to build models of 

these  three  aspects  in  amalgamation  would  result  in,  a  holistic 

model that could be used to test the hypothesis of this research. 
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The conceptualised holistic model is referred to as the AAANTS 

model.

A considerable amount of time was spent on evaluating existing 

agent  platforms  that  could  favourably  implement  the  AAANTS 

model.   However,  after  much  deliberation  it  was  decided  to 

implement a generic agent platform to realise the AAANTS model, 

because  the  existing  platforms  lacked  key  requirements  of  the 

model.   The  resulting  agent  implementation  was  called  as  the 

AAANTS platform.

The selection of experimental domains was based on the objectives 

of  the research.   The basic  requirement  of  the domain was  the 

ability to produce behaviour that is emergent and complex.  Based 

on  these  requirements  Grid  World  Foraging,  Robotic  Arm 

movement to grab an object and Visual Navigation of a Robotic 

vehicle  were  selected  as  the  prospects.   Implementation  for  all 

three domains were conducted, however, during the final stages of 

the  experiments,  the  Visual  Navigation  experiment  was 

discontinued since it was difficult to compare its results with the 

other two domains.

7.3 Research Conclusions

The conceptualisation of the AAANTS model was based on the 

hypothesis  and  the  objectives  mentioned  in  the  introductory 

chapter.   The model  was  driven by the concepts  of  innateness, 

adaptability,  emergence,  implicit  communication and behavioural 

congruence.   The  initial  inspiration  of  the  insect  colonies 

motivated the author to build an artificial model that incorporated 

Page 226 of 352



Chapter 7- Research Conclusions

the above ingredients to reach different grades of intelligence that 

could be deployed on heterogeneous problem domains.

The essence of emergence is that none of the contributors to the 

emergent behaviour is aware of the master plan.  The grid world 

experiments 1 and 2 is void of any form of emergence, however, it 

shows  gradual  improvements  (within  the  4  scenarios  of 

experiments  1 and 2) related to the use of shared contexts  and 

implicit communication among the participants.  However the grid 

world experiment 3 focuses on the emergent nature of behaviour 

with the introduction of the full functionalities of the AAANTS 

model.   The  AAANTS  model  demonstrates  considerable 

improvement  over  the  standard  Monte  Carlo  technique  and 

specially performs exceptionally better in larger grid sizes.  Further, 

it is concluded that dynamic changes in the environments (goal and 

obstacle location changes) are gracefully handled by the AAANTS 

model in comparison to the Monte-Carlo learning model.  These 

observations confirm the achievement of congruent behaviour in 

dynamic environments using the concept of the AAANTS model.

The grid world experiments confirm that the behavioural acts built, 

based on innate action templates provide better convergence to the 

optimum behaviour than using a pure adaptation strategy void of 

innate behaviour, which thereby confirm the respective objective 

set  forth in the introduction.   The purely adaptive experiments, 

especially  the  grid  world  simulation,  demonstrates  that  the 

simulations  conducted  void  of  action  templates  takes  relatively 

more  episodes  to  converge  to  the  optimum  path  and  further 

intermittently settle down on local optima.
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The argument of achieving different grades of intelligence using a 

static layer of innateness is another objective of this research.   The 

robotic arm experiment was dedicated to evaluate this hypothesis. 

This  experiment  solved  both  problems  of  object  pushing  and 

grabbing  using  a  static  collection  of  ATs.   Hence,  it  could  be 

concluded  that  innate  ATs  could  be  reinforced  and  adapted  to 

produce heterogeneous emergent behaviour.  However, it should 

be  noted  that  the possibilities  of  behaviour  would  be  restricted 

within the capabilities of the innate ATs.

7.4 Future Work

The AAANTS model and the experiments were focused on the 

fulfilment of the hypothesis and the objectives of the research.  A 

large collection of complementary methods and concepts resulted 

as a by-product of this research.  These aspects that could be used 

to  further  improve  the  capabilities  of  the  AAANTS  model  is 

discussed in this section.  The author intends to conduct further 

experiments  to improve the capabilities  of the AAANTS model 

and  hope  to  test  the  capabilities  in  a  more  complex  problem 

domain of vision navigation.

One of the highlights of the model is the capabilities in uniquely 

identifying a sensation and situations using TSFs based on sensory 

hubs.   However,  the  experimented  sensations  were  primitive  in 

nature and may need further enhancements to apply to a complex 

sensory  modality  such  as  vision.   One  of  the  methods  of 

improving  this  technique  is  with  the  proper  identification  of 

clustering  centres.   The  ant  colony  optimisation  algorithms 
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[KANA03a] [KANA03b] are one of the most successful methods 

that  could  overcome  FCM  algorithm’s  sensitivity  to  the  initial 

values  of  clustering  centres.     The  clustering  centres  filtered 

through Ant Optimisation Algorithms could be refined using the 

FCM algorithms.  However, the AAANTS model did not pursue 

this path in order to keep the FCM algorithm less complicated to 

suit the generic pattern recognition needs of this research.  Hence, 

this could be taken as a method of refining the overall research 

outcome in the future.

The aspect of building relationships among multi-modal sensory 

frames is not pursued in this research.  This is an aspect that could 

be researched further to gain insight to the integration of multi-

modal  sensations.   This  is  similar  to the  concept  of  Perceptual 

Integration  [COEN00],  where  perception  layers  from  multiple 

modalities are integrated into a holistic abstraction.  The McGurk 

effect [COEN00] is perhaps the most convincing demonstration of 

the inter-sensory integration where one modality radically changes 

perceptions in another through perceptual integration.  Hence, the 

integration  of  multi-modal  sensations  to  identify  situations  is  a 

useful  direction  to  improve  the  capabilities  of  the  AAANTS 

model.

In  this  research  the  agents  within  a  colony  were  defined  as 

cooperative.   However,  some  level  of  competition  among  the 

agents to resolve the overlapping nature of elementary behaviour 

may produce better results.  This would be a similar concept to the 

cross-exclusion concept [MINS86] which could be used to regulate 

levels of activities in an agent society.  When an agent in a group, 
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contributing  to  related  behaviour  is  aroused,  its  signals  tend  to 

inhibit  others in direct competition.   This leads to an avalanche 

effect,  as each competitor grows weaker; its  ability to inhibit  its 

challengers  also  weakens.   The  result  is  that  even  if  the  initial 

difference between competitors were small, the most active agent 

would  quickly  lock  out  all  the  others.   Consequently,  the  most 

suitable action template or elementary action could be selected by 

the agents.

With respect to the AAANTS model, agents have the capability to 

directly interface with the sensations relevant to their role using the 

sensory bus.  However, according to the society of mind theory by 

Marvin Minsky [MINS86], only a minority of agents are connected 

directly  to  the  sensors  of  the  outer  world,  like  those  that  send 

signals from the eye or skin; most of the agents in the brain detect 

the events inside the brain.  Further, according to Rodney Brooks 

[BROO92],  as  much  as  50% of  the  human  brain  seems  to  be 

devoted  to  perception,  the  rest  could  be  assumed  to  play  a 

coordination role with the rest of the community.  The AAANTS 

model  could be configured to dedicate a segment of  agents  for 

perceptive activities and the rest to be dependant only on inter-

agent communication for coordination.  This hypothesis could be 

tested  to  evaluate  whether  it  provides  improved  results  in 

comparison to the already conducted experiments.

Common sense reasoning is an attractive domain of research that 

may have applications to the AAANTS model.  The identification 

of common situations using TSFs and its relationships to common 

behaviour  could  be  extended  to  represent  a  common-sense 
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reasoning model.  The author intends to model this aspect using 

the  vision  navigation  domain  of  experiments  to  demonstrate 

similar behaviour to common situations.

The pattern matching methods applied to identify sensory patterns 

within the current model could be considered simple and sensitive 

to noise.  More advanced techniques of pattern matching such as 

frequency  analysis  using  Fourier  series  and  matrix  manipulation 

could  contribute  in  producing  more  accurate  pattern  matching 

models.

It would be a time consuming process to compare the outcomes of 

the AAANTS model  with the myriad of  learning  models.   The 

Monte Carlo based reinforcement learning method was selected as 

the representative for the rest of the algorithms due to the reasons 

stated in the experiment chapter.  However, it would be useful to 

compare these results to other learning models such as Temporal 

Difference,  Neural  networks,  belief  networks,  etc.,  for  future 

research  activities.   The  author  intends  to  publish  these  results 

subsequent to the acceptance of this dissertation.

The experiments were made complex by introducing aspects such 

as  obstacles  to  the  grid  world  environment.   However,  the 

environment  could  be  enhanced  to  further  complicate  and 

challenge the capabilities of the AAANTS model.  The collective 

transportation of food elements is one such agenda.  The change 

to the existing food transportation process could be explained as 

follows.  An agent has a limitation to the food chunk size it could 

transport which could be referred as the Agent Chunk Size.  Each 
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agent arriving at a food source should first calculate the chunk size 

of the food source.  If the “agent chunk size” >= “food chunk 

size”;  then  the  agent  could  transport  food,  a  chunk  at  a  time. 

When “agent chunk size” < “food chunk size”, a single agent does 

not  have the capacity  to carry  a  food chunk on its  own which 

requires collective effort.  The correct number of agents should be 

grouped  to  carry  out  the  food  transportation.   Hence,  the 

important aspect is the calculation of the exact number of agents 

that is needed to transport a food chunk and the coordination of 

the selected group in reaching the nest collectively.  

Finally,  the AAANTS model  discussed action templates  as  fully 

produced  through  the  innate  layer  to  make  the  model  less 

complicated to experiment.  However, action templates could be 

produced  by  the  adaptive  layer  using  a  stochastic  selection  of 

elementary  actions.   The  produced  ATs  could  be  selected  or 

destroyed  based  on  the  reinforcements  from  the  environment. 

This process would enable an artificial entity to produce emergent 

behaviour that are even absent in the innate layer action templates. 

This is an aspect identified as an enhancement to the initial model 

of AAANTS.

The  above  research  directions  could  be  identified  as  separate 

projects  as  extensions  to  the  AAANTS model.   The  AAANTS 

model could be applied to more complex AI problem domains by 

incorporating  the  above  mentioned  modifications.   The  author 

sincerely believes that anthropomorphic behaviour in an artificial 

entity could be achieved by biologically inspired AI models. 
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Appendix A: Definitions of Software Agents

Definition 1: “An agent is an encapsulated computer system that is situated in some 

environment, and that is capable of flexible, autonomous action in that environment in 

order to meet its design objectives”[JENN99].

Definition 2: “An agent is  a system that  tries  to fulfil  a set  of  goals  in  a  complex, 

dynamic  environment.   An  agent  is  situated  in  the  environment;  it  can  sense  the 

environment  through  its  sensors  and  act  upon  the  environment  using  its  actuators. 

Autonomous agents are systems that inhabit a dynamic, unpredictable environment in 

which they try to satisfy a set of time dependent goals or motivations.  Agents are said to 

be  adaptive  if  they  improve  their  competence  at  dealing  with  these  goals  based  on 

experience” [PATT94].

Definition 3: “Agent can be defined as a computer system that is either conceptualised 

or implemented using concepts that are more usually applied to humans.  Agent can be 

denoted as hardware or software based computer system that enjoys the properties such 

as autonomy, social ability, reactivity, and pro-activeness” [JENN95a].

Definition 4: “Agents can be defined as intelligent toolboxes with a primary purpose of 

providing active assistance to their environment” [DIMI98].

Definition 5: “An agent is a computer program that acts autonomously on behalf of a 

person or  organisation.   Each agent  has  its  own thread of  execution  so  that  it  can 

perform tasks on its own initiative” [MFAC97].

Definition 6: “An intelligent  agent is  software that  can take independent  actions on 

behalf of a user’s goals without explicit interaction by the user” [HENR01].

Definition 7: “An agent is a system situated within and a part of an environment that 

senses that environment and acts on it, over time, in pursuit of its own agenda and so as 

to effect what it senses in the future” [FRAN96].

Definition 8: “A software entity is an agent if it has the data and code encapsulation of a 

software object, its own thread of control (making it an active object), and the ability to 

execute  autonomously  without  being  invoked  externally  (thus  proactive  rather  than 

reactive)” [PARU98].
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Appendix B: Existing Agent Platforms and 

Architectures

Many agent platforms were investigated to evaluate whether the AAANTS model could 

be realised through these implementations.  Among these platforms, the Agent Network 

for Task Scheduling (ANTS) architecture [SAUT99], was identified as an agent platform 

that is inspired by both human institutions and insect colonies which is similar to that of 

the  AAANTS model.   This  platform was  designed  for  the  domain  of  supply  chain 

management  where  large  populations  of  simple  agents  exhibit  robust  behaviour  in 

scheduling supply chains.  Further, the ANTS is a agent based system that could assist 

and supplement human-based interaction and decision making in a supply chain without 

the  need for centralised or top-down management  schemes.   However,  it  should be 

reiterated that this platform is not of generic nature and specific to the domain of supply 

chain management.

Anthill [BABA01] is modelled from inspiration from ant colony behaviour similar to the 

AAANTS model.  The Anthill  model is based on two logical entities:  nests and ants. 

Each nest is a peer entity capable of performing computations and hosting resources. 

Nests handle requests originating at users by generating one or more ants.  Ants interact 

indirectly with each other by modifying their environment through information stored in 

the  visited  nests.  Additionally,  Anthill  pushes  the  analogy  with  natural  systems  even 

further  by  “evolving”  ant  algorithms  to  better  adapt  to  certain  tasks.  This  is 

accomplished  through evolutionary  computing  techniques  such  as  genetic  algorithms 

within a simulation environment. 

Scatterbrain [COEN97] [COEN98] is a distributed collection of software agents related 

to the domain of  Intelligent  Environments.   It  describes an existing prototype space 

known as the intelligent room, which is created to experiment with different forms of 

natural, multi-modal human-computer interactions.  In Scatterbrain, the complexity of 

the overall system comes from the interactions of a collection of agents which is similar 

in  concept  to  the  emergent  nature  of  the  AAANTS model.   It  consists  of  distinct 

intercommunicating agents with the primary task of linking various components of an 
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intelligent room such as tracking cameras, speech recognition systems and to connect 

them to internal and external stores of information.

The above discussed platforms have direct relationship with the AAANTS platform due 

to similarity of the foundation concepts.  However, there were several other platforms 

evaluated during the initial stages which were based on different agent models such as 

Cognitive,  Reactive  and  BDI.   RETSINA  [SYCA99a],  MadKit  [RICO00],  Zeus 

[RICO00]  and  ADE  [ANDR03]  were  based  on  the  cognitive  agent  paradigm. 

RETSINA,  MadKit  and  Zeus  are  multi-agent  systems  implemented  on  high-level 

communications languages for agent collaboration.  ADE is also a multi-agent system 

developed in Java with the facility of agent mobility.  All these platforms were built of 

generic platforms that could be configured for different cognitive agent implementations. 

Due to the hybrid nature of the AAANTS model, the above listed platforms were not 

considered.

The  Belief,  Desire,  Intention  (BDI)  [BUSE99]  [MARK98]  [GRIF99]  [WOOL00] 

[PYNA02] is another popular agent model accepted by the research community to model 

intelligent software artefacts in which an agent’s beliefs correspond to information the 

agent has about the world which may be incomplete and or incorrect.   AgentBuilder 

[RICO00], Jack [RICO00] and dMARS [RICO00] are conceptualised on the DBI agent 

model.  BDI model also falls into the cognitive agent paradigm and not considered for 

the AAANTS research.
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Appendix C: Frames: Structure, Control, 

Transformation and Manipulation

An important intuition underlying a frame system is that people cope with new situations 

by relating the new information similarity to previous experiences [MINS74].  A frame is 

a data structure that is typically used to represent a single object or a class of related 

objects, or a general concept or predicate [KARP93] [REIC91] [LASS01].  Frames are 

typically arranged in a taxonomic hierarchy in which each frame is linked to one or many 

parent frames.   Therefore a collection frames in one or more inheritance  hierarchies 

could be called as a knowledge base [KARP93].

The slots of a frame describe attributes of the entity represented by that frame, and could 

also describe binary relations between that frame and another frame [KARP93].  A slot 

usually consists of two parts: A slot name, which describes an attribute, and a slot-filler, 

which describes either a value for that attribute or a restriction on the range of possible 

values  [KARP93].   In  most  frame  systems  we  can  identify  two  types  of  frames 

[KARP93].  The first type of frame, called a class-frame, is a description of a class of 

entities in the world.  The second type of a frame is the instance frame, which is an 

intentional description of an individual entity in the world.

A collection  of  frames could be  linked  together  into  frame-systems [MINS74].   The 

effects of important actions are mirrored by transformations between the frames of a 

system.   The frame-systems are linked,  in  turn,  by  an information retrieval  network. 

When  a  proposed  frame  cannot  be  made  to  fit  reality,  this  network  provides  a 

replacement frame [MINS74].  These inter-frame structures make possible other ways to 

represent  knowledge  about  facts,  analogies,  and  other  information  useful  in 

understanding [MINS74].

Once a frame is proposed to represent a situation, a matching process tries to assign 

values to each frame’s terminals,  consistent with the representation of each situation. 

The matching process is partly controlled by information associated with the frame and 

partly  by  knowledge  about  the  system’s  current  goals  [MINS74].   Frame  system 

reasoning may sometimes be incomplete [DAVI93] and frame systems do not typically 
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make guarantees about the computational tractability of their inference [LASS01].  There 

are  several  techniques  for  finding  and  organising  frames  such  as  Pattern  Matching 

Process, Clustering Theory, and Similarity Network [MINS74].

Each frame has terminals for attaching pointers to substructures.  Different frames could 

share the same terminal, which could thus correspond to the same physical features as 

seen in different views.  This permits us to represent, in a single place, view independent 

information gathered at different times and places [MINS74].
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Appendix D: Credit Assignment Techniques

The basic problem of any learning system is to deal with the Credit-Assignment Problem 

(CAP), that is, the problem of properly assigning feedback-credit or blame for an overall 

performance  change  (increase  or  decrease)  to  each  of  the  system  activities  that 

contributed to that change.  The CAP for MASs could be usefully decomposed into two 

sub problems [WEIS00]: Inter-agent CAP – the assignment of credit or blame for an 

overall performance change to the external actions of the agents and intra-agent CAP – 

the assignment of  credit  or blame for an overall  performance change to the internal 

actions of the agents.

According to Sachiyo Arai [ARAI00c], there are two credit assignment procedures based 

on  boot-strapped  and  non-boot-strapped  methods.   The  boot-strapped  method  is 

inspired by dynamic programming and attempts to satisfy Bellman equations relating to 

the values of successive states to make the agent behave optimally [ARAI00c].  The non-

boot-strapped method is inspired by classifier systems [DIET97] and does not attempt to 

estimate the value of all rules that cover the state space, but just accumulates the weight 

on successful rules based on the agent’s experience [ARAI00c].

According to Vijaykumar Gullapalli [GULL92], the structural credit assignment has two 

aspects: the hidden component and multiple action elements.  In the hidden component, 

CAP involves assigning credit to those components that do not directly interact with the 

environment.  The multiple action elements arise when the learning system’s actions are 

multi-dimensional and the learning system has to determine the relative impact of each 

action element in various situations to apportion credit among the action elements for 

the  ensuing  evaluation  [GULL92].   The  Gradient  methods  could  be  used for  credit 

assignment in hidden component aspects.  The gradient methods indicate the degree of 

influence of each unit on the criterion function, and hence each unit is assigned credit 

proportional to the magnitude of the gradient [GULL92]. 

Another technique is based on a measure of worth of a network component [GULL92]. 

The  measure  of  worth  is  used to  determine  how to  streamline  the  structure  of  the 

learning system by discarding useless components and by adding useful new components 
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[GULL92].  The worth of a component is estimated by evaluating the contribution it 

makes to the output of the learning system.  A commonly used measure is the overall 

output of the learning system.  The credit assignment based on contribution could be 

achieved  by assigning  sensitivity  values  to individual  action  elements  in  each context 

[GULL92].  These sensitivity values are used to scale the learning rates when adjusting 

the  action  elements.   Action  elements  with  low  sensitivity  values  undergo  relatively 

smaller  adjustments  than  action  elements  with  high  sensitivity,  thereby  reducing 

superstitious learning in the elements that are inactive in a given context.  The partial 

derivatives are used to calculate the sensitivities of action elements [GULL92].
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Appendix E: Background on Evolutionary 

Techniques

Anthill [BABA01] is a simulation environment that uses evolutionary techniques such as 

genetic  algorithms  in  designing  ant  algorithms.   Ant  algorithms  are  based  on  the 

behaviour of ants that uses pheromones to find the optimal path whether based on the 

deterministic or probabilistic methods.  The Anthill  simulation environment has been 

extended to enable the definition of a collection of such parameters and the selection of 

the fittest set of parameters for a particular task.

Evolutionary agents could also be used to improve capabilities of an agent community. 

MAB-Net  [OHTA00]  creates  a  new artificial  neural  network  model  with  a  dynamic 

structure.   In  order  to  put  dynamic  structure  into  practice,  in  MAB-Net,  neurone’s 

functions as agents while they grow, cut connections, self-replicate, and evolve. The key 

idea is that neurones work not only as a neural network but also as evolutionary agents. 

As an evolutionary agent, each neurone has a gene that works as a strategic program; and 

based  on  the  strategic  program,  neurones  execute  these  behaviours,  such  as  grow, 

absorb, move, turn, and so on. Each neurone has a gene and energy. A gene is decoded 

into  a  strategic  program and energy  is  reduced  every  time  when commands  on  the 

strategic program are executed.  These are the commands on the strategic programs. 

When the Cell-Divide command is executed, a new agent is generated.  If energy runs 

out, an agent is killed.

Another  solution  is  the  Amalthaea  system [ALEX96]  that  also  focuses  a  lot  on  the 

evolutionary aspects of  the agents.   Amalthaea describes evolutionary agents that  are 

handled by two elements: their individual fitness and the overall fitness of the system. 

Only a variable number of top ranked performers of the whole population are allowed to 

produce offspring.  The rank of an agent is based solely on its fitness.  The number of 

the agents that will be allowed to produce offspring is linearly related to the number of 

agents  that  will  be  purged  because  of  poor  performance.   If  the  overall  fitness 

diminishes, then the evolution is increased in search for quicker adaptation of the users’ 

new  interests.   If  the  overall  fitness  increases  the  evolution  is  kept  at  a  constant 
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configurable  rate  to  allow  the  system to  slowly  explore  the  search  space  for  better 

solutions.

Another  two  popular  concepts  used  in  this  sphere  of  interest  are  Evolutionary 

Programming (EP) Genetic Algorithms (GA) [KENN01].  Evolutionary programming is 

derived from the simulation of adaptive behaviour in evolution: GA is derived from the 

simulation  of  genetics  [KENN01].   The difference is  perhaps  subtle,  but  important. 

Genetic algorithms work in the genotype space, while evolutionary programming (EP) 

emphasizes the phenotype space of observable behaviours [KENN01].  EP therefore is 

directed at evolving “behaviour” that solves the problem at hand; it mimics “phenotype 

evolution” [KENN01].
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Appendix F: Hamilton’s Formula

This formula describes the balance between the urge for reproduction and dedication to 

the community of partners.  The humans and insects have considerable differences when 

it  comes to reproduction.   Humans tend to be very self-centred and act  in  a selfish 

manner  to  participate  in  sexual  activities  whereas  insects  sacrifice  their  reproductive 

rights to the success of the immediate family.  We may find rare instances in the human 

society where sister and brothers scarifies their sexual interests to take care of offspring’s 

of kin.  However, insects have this altruistic capability embedded in their genes.  

The purpose of reproduction is to pass down genes to the next generations.  There are 

two  ways  for  alleles  to  be  passed  to  future  generation:  personal  reproduction  and 

promoting  genes  of  common  decent  or  collateral  relatives  [HOLL90].   Both  these 

scenarios could be described with a Fitness  Indicator.   The measure of the personal 

reproductive  success is  known as Classical  Fitness  and Inclusive  Fitness  incorporates 

both  Classical  Fitness  and  its  influence  on  the  reproduction  of  collateral  relatives 

[HOLL90].  The following formulas describe these two indicators.

Classical Fitness 
)(

)(
)(

RSA

RSE
W =

(Where E(RS) is the average direct reproductive success of individuals possessing the 

genotype of interest which measures the number of offspring the individual injects into 

the population, in comparison with the remainder of the population; A(RS) is the average 

reproductive success of a population)

Inclusive Fitness 
)(

)()(
)(

IFA

RSEbRSE
IF j∑+

=
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(Where ∑ )(RSEb j  is the effect on the reproduction of all of the collateral relatives; 

jb
is  the  coefficient  of  relatedness,  the  probability  that  the  relative  j  of  the  focal 

individual also possesses the allele of interest, A(IF) is the average inclusive fitness of the 

population)

Hamilton’s  rule  says  that  the  benefit  to  relatives  is  discounted  by  the  degree  of 

relationship, as a result, lesser the relatedness, the greater the benefit must be to counter 

balance the cost [HOLL90].

Hamilton’s Rule: )(Pr)(/)( allelesamehavingrelativebBenifitBCostC −−−−<

(Where C is the loss in expected personal reproductive success through self-sacrificing 

behaviour;  B is  the  increase  in  the  relatives’  expected reproductive  success,  b  is  the 

probability that the relatives have the same allele)

When  part  of  the  group sacrifices  their  reproductive  rights  for  the  others,  then  the 

reproductive  group should  be  able  to  perform that  function  and benefit  the  overall 

community  considerably  better  than  themselves  getting  involved  in  reproduction 

[HOLL90].
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Abstract

The  AAANTS  (Adaptive  Autonomous  Agent  Colony  Interactions  with  Network  Transparent  

Services) is a multi-agent system conceptualised to model distributed collective intelligence by coordinated  

actions of a colony of agents.  The model is inspired by the fascinating accomplishments of colony based  

insects such as Ants.  Each individual in a colony is so simple and insignificant, though they collectively  

accomplish complicated tasks.  Hence, the selection of the learning methodology, knowledge representation  

and coordination technique is of prime importance to the success of this model.

Our  conscious  lives  can  be  regarded  as  a  gradual  movement  from one  state  to  another  within  the  

environment.  During  this  state  transition,  the  decision  to  select  the next  state  could  be learnt  from  

pervious  experience  or  could  be  based  on  spontaneous  and  purely  stochastic  exploration.   The  

AAANTS model describes a technique based on Reinforcement Learning that maintains a partial  

model of the environment.  Further, the definition of Hub states is of special importance to this model.  

A Hub state which can also be called as sub-goals is a critical state that directly impacts the achievement  

of the final goal.  It is the use of Hub states that enable a collection of agents to perform concurrent and  

coordinated  actions.   The  coordination  is  facilitated  by  pheromone  based  communication  among  a  

collection of homogeneous agents which enables the clustering around Hub states.  This methodology was  

tested  using  experiments  on  foraging,  robotic  arm  movement  and  vision  based  navigation.   The  

preliminary results of these experiments have shown considerable improvements over techniques based on  

traditional Reinforcement Learning techniques.
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Introduction

All entities of living and non-living nature show signs of emergence.  It is accepted that 

objects  are constructed by minute atomic particles,  though different patterns of such 

particles  creates  a  fascinating  diversification  in  the  environment.   Similarly,  complex 

behaviours  are emerged from atomic actions  generated by a myriad of objects.   The 

secret lies in learning the execution of the optimum concurrent and coordinated action 

pattern by all participants.  Further, the evidence of emergence is witnessed in theories 

such as creation of mind from mindless elements [MINS86] and colony behaviour of 

Ants where each Ant is very basic and insignificant [HOLL94].

Adaptations  to  overcome  state  changes  within  the  environment  could  happen  as 

genetical improvements within a species or by active learning.  Lower level animals such 

as insects tend to overcome state manipulation mainly based on genetically implanted 

information.  The genetics tend to implement in-born capabilities to map correct actions 

to environmental perceptions.  Even higher level animals such as humans tend to posses 

capabilities such as reflex actions that are genetically defined.  Obviously,  the animals 

with shorter life-span tend to thrive on genetical information since there is no reasonable 

time to learn either by supervision or reinforcement.  Therefore, genetical mutation is a 

very useful mechanism for the survival of many species where reinforced and supervised 

learning techniques enable survival during a single lifespan.

The  AAANTS  model  was  conceptualised  for  simulating  collective  intelligence  with 

simple  and  incomplex  software  elements.   The  software  elements  are  described  as 

software  agents  where  each  agent  is  autonomous,  adaptive  and  communicates  with 

others in the community [JENN95].  The model blends the techniques of reinforcement 

learning, frame-based knowledge representation and pheromone based communication 

among insects.  The model also encompasses the process of assigning the learning ability 

to  a  distributed  collection  of  software  agents.   The  valuable  lesson  learnt  from this 

exercise is the emergence of complex behaviour as a result  of coordinated actions of 

simple agents.

A valuable concept being invested in this paper is the use of “Hubs”.  In any network, 

the network elements are connected through links.  Networks with connectors (nodes 
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with  an  enormous  number  of  links)  are  present  in  very  diverse  complex  systems 

[BARA02].   These  concentrated  and  highly  connected  nodes  are  called  as  “Hubs” 

[BARA02].  It is assumed that the optimum path through a network can be found by 

traversing  across  the  most  concentrated  Hubs.   Hence,  Hubs  be  could  regarded  as 

intermediary states or sub-goals for reaching the final goal and regarded as very crucial to 

the success of the learning model.  The Hub concept also has an orthogonal effect of 

demonstrating a layered learning process.  These layers could be expanded or collapsed 

with the effects of exploration and exploitation strategies.

Architecture of the AAANTS Learning System

The Architecture  of  a  system should  encompass  the  building  components  and  their 

interconnectivity.  It should also facilitate the functionality expected out of that entity. 

There is  wide variety of learning system architectures that has evolved in the natural 

world. The purpose of the learning architecture of an animal is to facilitate the survival in 

a particular type of environment.  The demands of the environment and the purpose of 

the species dictate the overall learning structure.  

An important objective of the AAANTS architecture is to facilitate a general purpose 

learning platform that can be adapted to different situations.  This paper presents several 

experiments to justify this objective - foraging in a grid world, robotic arm movement 

and  vision  based  navigation.   Another  objective  of  an  architecture  is  to  facilitate 

collective  learning.   Hence,  the  AAANTS  model  can  be  described  as  a  distributed 

learning  system  as  opposed  to  a  centralised  cognitive  system.   In  a  distributed 

architecture the system tasks are mapped to a series of atomic behavioural modules and 

are  interconnected  to  build  a  complete  learning  system  [COLO94]  [COLO93].   A 

distributed  architecture  could  be  represented  as  flat  or  hierarchical  where  AAANTS 

model could be described as hierarchical which may be also debated as a layered model.

The hierarchical architecture gives way to a layered model.  There is lot of alignment 

from  many  other  research  publications  about  the  use  of  layering  and  modular 

decomposition.   According  to [MINS86],  the development of the human mind from 

Page 264 of 352



Appendices

infancy to adulthood is achieved in terms of stages where each stage acts as a teacher to 

the next stage by providing guidance and assistance.  MAXQ method [DIET00] provides 

a similar strategy to that of AAANTS where it decomposes a Reinforcement Learning 

problem  into  a  set  of  sub-problems.   This  is  further  confirmed  by  arguments  of 

[GULL92], where a high level  complex task may be decomposed into a sequence of 

lower-level tasks and thereafter the same activity performed on the sub-tasks until atomic 

functions  are  reached.   HAM (Hierarchical  Abstract  Machines)  [PARR97]  is  another 

similar concept where nondeterministic finite state machines are organised in a hierarchy 

and higher level abstractions invoke lower level machines [PARR97].  Further, machines 

for HAMs are defined by a set of states, a transition function, and a start function that 

determines the initial state of the machine.

Perception Adaptor

Actuation Controller

State Model

State
Consciousness

Partner
Consciousness

Figure 1: Learning Architecture of an Agent

AAANTS model is best described as a colony of agents where each agent contributes to 

the overall success of the system.  Agents maintain a limited model of the environment 

and  coordinate  actions  to  achieve  global  objectives.   The overall  architecture  of  the 

AAANTS  model  consists  of  agents,  together  with  sensory  and  actuation  adaptors 

[RANA02] [RANA03].  The architecture of an individual agent with the emphasis on the 

main modules that facilitate learning is depicted in figure 1.  Agents interface to the outer 

world (consisting of other agents, sensations and actuations), with the use of Perception 

Adaptor and Actuation Controller.  The State Model maintains a summary of states that 

is  of  interest  to  the  agent  which  will  always  represent  a  subset  of  global  states.   It 
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maintains a repository of information about state-action values, hub states and optimal / 

sub-optimal paths.  The Consciousness modules keep references to the on-going states 

of each individual agent as well as to the others in the colony within the perimeter of a 

homogeneous group.  It is with the use of the Consciousness elements that an agent can 

take actions that are coordinated with others.

The Learning Method

AAANTS learning method uses Reinforcement Learning, Frames, Agents and Hubs as 

ingredients.  A goal can be achieved with a properly coordinated sequence of actions by a 

community of agents.  Inter-agent communication is a facilitator for this coordination. 

During the initial agent interactions with the environment, each agent tends to maintain a 

flat structure of state sequences and as the agents iterate though the environmental states 

with the objective of finding the global optimum, collection of states separated through 

Hubs are arranged into a layered hierarchy (figure 2).  With reference to (figure 2), the 

states represented by L1S1, L1S2, L1S3 ending with sub-state L1S4 in layer 1, can be 

represented by a single state (L2S1) in layer 2.

A higher level state represents a link between two very important lower level states – the 

Hub states.  This is to some extent similar to Nearest Sequence Memory (NSM) where 

raw experiences  are  recorded as  a  linear  chain  and the  choice  of  the  next  action  is 

evaluated based on the nearest neighbours in the experience chain [GARD98].   It is also 

researched that organising past experiences hierarchically scales better to problems with 

long decision sequences than organising past experiences as a linear chain of primitive 

observations  and actions  [GARD98].   Further,  each layer  is  represented by  different 

instances of agents where the higher level agents trigger lower levels to perform actions. 

The  hierarchy  is  not  pre-defined,  but  dynamically  expanded  and  collapsed  with  the 

iterative adaptations to a changing environment. 
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Start L1S1 L1S2 L1S3 L1S5 L1S6 L1S7 L1S8
Sub-
Goal

Sub-
Goal

L2S1 L2S2

L3S1

 

Figure 2: Hierarchical layers based on hubs

The two highly researched methods in RL so far by the research community are Monte-

Carlo (MC) and Temporal Difference (TD) [SUTT98].  These methods can be further 

enhanced and also combined in flavour with the use techniques such as approximation, 

eligibility,  models,  and active/passive learning.  This thesis concentrates on a learning 

methodology based on TD based “Sarsa” while  extending it  with the use of models. 

Further, a reinforced methodology can be on-policy and off-policy.  On-policy methods 

evaluate  and improve  the  same policy  that  is  used to make decisions.   In off-policy 

methods, the policy to generate behaviour (behaviour policy) is different to the policy 

that is evaluated and improved (estimation policy) [SUTT98].  AAANTS invests on on-

policy method that is evaluated episodically.

We use the concept of frames as described by Minsky [MINS86] to implement the state 

representations.  Each agent will capture its share of state instances as experience of the 

environment  grows.   These  frames  are  attached  to  each  other  in  a  manner  of 

representing  the  experience  with  the  environment.   The links  among the  frames  are 

strengthened or weakened with the help of episodic reinforcements given to the agents. 

Over a period of time, an agent may accumulate a vast collection of state instances where 

in a complex environment may become impractical to maintain.  In order to overcome 

such situations humans settle down on standard averages to define similar states and also 

use heuristics to overcome complex situations.  We call this as common-sense reasoning. 

In a learning methodology, function approximation techniques and non-monotonic logic 

are used to implement heuristics.
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A  complex  task  can  be  achieved  through  the  execution  of  elementary  actions. 

Implementing sequential execution of a collection of elementary actions to implement a 

complex task is of trivial nature.  However, most tasks require overlapped concurrent 

execution  of  actions  by  individual  control  units,  which  in  AAANTS  concept  is 

represented  by  agents.   The  key  issue  with  concurrency  is  in  finding  the  optimum 

coordination strategy.  The rest of the sections in this paper discuss this coordinated 

division of labour with the use of Hubs.  Agents treat hubs as goals where overall activity 

can be collectively carried out by a group of agents.

AAANTS model proposes social learning as a useful technique for improvement. Social 

or observational learning is the process of acquiring new behaviour patterns in a social 

context, by learning from conspecifics [MATA94]. Social learning could be implemented 

though imitation and mimicry where it is useful to differentiate each other. Though both 

mimicry and imitation observe and repeat the behaviour of another agent, in mimicry the 

mimicking agent does not understand the goal of the behaviour or the internal state of 

the  agent  being  mimicked  [MATA94].   Social  facilitation  is  another  social  learning 

method which refers to the process of selectively expressing a behaviour which is already 

a part of the animal’s species-specific repertoire [MATA94].  A society can develop social 

rules  based  on  individual  learning  if  the  agents  are  able  to  estimate  other  agents’ 

reinforcement  and  their  individual  reinforcement  is  positively  correlated  with  their 

conspecifics [MATA94].

The  AAANTS  model  implements  social  learning  by  introducing  an  agent  with  an 

optimum  state  sequence  to  achieve  the  goal.   It  is  this  technique  that  blends  the 

supervised and reinforcement learning methodologies.  Usually, agents converge towards 

the optimum path where in insects this is represented by a higher level of pheromone 

concentration.  This supervisory agent disseminates information related to the optimal 

path to others in a homogeneous community.  However, it should be mentioned that this 

technique does not implemented direct supervision, but acts as an encouragement to the 

others to reach the optimum convergence.  It further reduces the danger of a culprit 

agent  misdirecting  a  whole  community  of  agents  which  is  quite  obvious  when 

considering history of human leaders.
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Exploration  and  Exploitation  Strategy  for  the  AAANTS 

Model

An action takes agents from one state to another.  In a given state there can be many 

actions that transfer an agent to other different states.  Normally, an agent may tend to 

take the action with the highest expected reward as per the previous experience.  If an 

agent adopts this type of strategy more frequently,  we can call  it  as greedy and non-

exploratory.  The research done in this area expose that greedy actions usually contribute 

towards local optima.  Therefore, an agent has to exploit what it already knows in order 

to obtain rewards, but it also has to explore in order to make better action selections in 

the future.

The model concentrates on a strategy that employs the proper blend of exploration and 

exploitation.  The dilemma is that neither exploitation nor exploration can be pursued 

exclusively  without  failing  at  the  task [SUTT98]  and further  according  to [KAEL96] 

there are no good, formally justified approaches to this problem either.  For example, 

when a group of agents are released to a grid world defined for foraging, a heuristic can 

be  developed  to  initially  encourage  exploration  and  thereafter  converge  towards  an 

exploitation policy.  However, this strategy would not succeed in an environment where 

the dynamics change, which would require periodic exploration.

Exploration  of  actions  can  be  done  using  methods  such  as  Boltzman  distribution 

(actions  selected  randomly),  pseudo-stochastic  choice  (Best  action  or  random action 

chosen),  and  pseudo-exhaustive  choice  (Best  action  or  least  recently  chosen).   The 

experiments of [PIER94] conclude that Boltzman distribution produced worst results in 

terms of steps to converge to the optimal solution.  It is confirmed that on a stochastic 

task,  each  action  must  be  tried  many  times  to  reliably  estimate  its  expected  reward 

[SUTT98].  Hence, the AAANTS learning model formulates a methodology of using a 

blend  of  stochastic  and  common-sense  based  patterns  to  address  the  exploration-

exploitation dilemma.

In a robot experiment problem, [TANG02] confirms that exploration can be made more 

efficient by dividing the area into sub-areas and having the robots disperse to explore 

those sub-areas, which in tern induce cooperation.  Hence, exploration among spatially 
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distributed collection of  agents  when converged would provide  improvements to the 

global optimum with reduced effort. We could also apply Nash Equilibrium to restrict 

unilateral deviation of agents and would cause each agent’s choice to be in synergy with 

all others [HU98].

Action  selection  strategy  for  exploitation  and  exploration  are  quite  different.   In 

exploitation it is much simple where the action with the highest reward in that state is the 

priority of execution.  This action is selected either by remembering past actions or by 

using a function approximation technique.  However, action selection for exploration is a 

difficult matter altogether.  The following is a list of strategies used for exploration in the 

AAANTS model.

1. The  most  frequently  used  actions  within  the  state  space  are  a  suitable 

measurement for selecting an action for exploration.  We also need to attach the 

preference of actions to a given context.  This is due to the fact that within the 

same state space, depending on the context or more precisely the immediate goal 

state, the most preferred action could change.

Each action 
( )Aa i ∈

in total state space (S) and Context (C)

( )ic aE : accumulated expected reward for an action, and  ( )ixc aV : the reward 

for  a  specific  type  of  action  instance,  and  therefore  
( ) ∑

=

=
n

x
ixcic aVaE

0 and 

( )[ ]ic aEmax  is  the  reward  for  the  most  globally  preferred  action.   Hence, 

( )[ ]ic aEmax  can be regarded as the most preferred action within the context C.

2. Actions taken to reach the immediate Hub state are a good heuristic for selecting 

actions for exploration.  When ixa refers to a list of actions that can be used to 

reach the immediate Hub state,  ( )[ ]]max[ xic aV  is the most preferred action out 

of that list.  Since Hub states are major decision points for the global success, the 
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respective actions to reach them can be assumed as highly probable actions to 

reach the goal.

3. An action can be selected stochastically either from the actions that are available 

in a given state or from rest of the actions from (1) and (2) excluding the most 

suitable.

4. Some  states  can  represent  a  degree  of  similarity  based  on  different  aspects. 

However, two states in the environment are very unlikely to be exactly similar, 

though we can only define a degree of similarity.  The last strategy is for an agent 

to invest on the actions taken from states similar to that of the current state.

The  AAANTS learning  model  describes  several  ways  of  evaluating  the  similarity  of 

states.  The following strategies are adapted to assess state similarity.

1. Similarity based on action patterns

S1 S2

S3 S4

S5 S6

S7 S8

S9 S10
a1 a1 a1

a2 a2

a3 a3

a4 a4

Figure 3: State similarity with action patterns

{(S1, a1), (S2, a2), (S3, a3), (S4, a4)} = {(S5, a1), (S6, a2), (S7, a3), (S8, a4)}

When two or more states initiate a sequence of actions that are similar in the 

pattern of execution, we could call the initiating and terminating states as similar. 

With reference to the above diagram (figure 3), states S1, S5 and S9 could be 

called as similar due to the action pattern {a1, a2, a3, a4}.  This type of pattern 

recognition is a trivial process when considering search space of a single agent. 
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However,  it  becomes  complicated  when  considering  coordinated  concurrent 

actions of a group of agents.  Therefore, the current experiments focus only on 

individual agent state space.

2. Similarity based on feature patterns

States can be similar based on the attributes inherent to a state (e.g. temperature, 

pressure, radiation levels, light intensity, etc) or based on the spatial arrangement 

of objects with respect to the neighbouring states and entities.  The neighbouring 

states can be used to identify spatial and attribute based patterns.  The spatial 

arrangement of neighbouring states of S1 and S2 (Figure 4) based on angle of 

separation can be used to assess the similarity of states ( 21 QQ ≈ ).

S1

S2

S2

S1

Q1

Q2

Figure 4: State similarity due to spatial and attribute patterns

3. State values based on rewards

Another successful way to evaluate the similarity of states is by the use of reward 

values received during the past  experiences  with the  environment.   The state 

values  are  numerical  accumulations  of  reinforcements  received  during  past 

experiences within a given domain.  States can be grouped into homogeneous 

categories with the use of value bands.
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Coordinated Rewards and Learning Patterns

The  previous  section  discussed  the  usefulness  of  Hubs  to  converge  to  a  globally 

optimum state pattern.  In this section,  the Hub concept is further extended for the 

purpose of conceptualising coordinated behaviour in a community of agents.  Therefore, 

the recognition of Hub states is of special interest to the AAANTS learning model.  A 

Hub is a special state that is recognised as important when compared to its neighbours. 

A Hub can be created due to reasons such as high state values resulted from episodic 

reinforcements, special interim rewards before reaching the final goal, local optima, and 

lastly and most importantly, states that are used by agents to coordinate dependant action 

execution.

An agent needs to model the behaviour of other agents to contribute to the global well-

being.   Modelling  others  in  the  environment  is  a  complicated  task  which  needs  to 

maintain large volumes of state information.  The problem is two folded.  Large amount 

of data is difficult to maintain and further latency of processing such data will hinder 

behaviour expectations in a real-time environment.   The suggestion of the AAANTS 

model is to maintain the Coordination States or Hub States, of agents in a homogeneous 

group.

S11 S12

S21 S22 S23 S24

S31 S32 T

Agent A

Agent B

Agent C

Hub X Hub Y

A 11

A 21 A 22 A 23

A 31 A 32

Figure 5: Use of Hub states for agent coordination
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When an initiator broadcasts its objectives to achieve a Coordinated State, the agents that 

need to synchronise at that state would start executing a series of actions to reach it.  The 

above diagram (figure 5) shows a situation where three agents A, B, and C perform a 

series of actions individually but in a synchronised manner.  Continuous experience in 

the environment has enabled the agents to learn that state pairs S12 and S21 together 

with S24 and S31 synchronise the elementary actions of the three agents to perform a 

complex task.

Obstruction
Hub

Goal

Home

C

A

B

C

A

B

Q1 Q1

A

B

C

Q2

Figure 6: Use of hub states in heterogeneous environments for coordination

The  above  diagram  (figure  6)  accurately  depicts  the  use  of  Hubs  by  agents  in 

heterogeneous environments.  In the grid world the agent moves from home to goal 

state though a natural obstruction while receiving a reward from the environment.  This 

reward is taken as a special situation and the respective state is marked as a Hub state by 

the agent.  When considering the robotic arm, reference angles among the agents A, B 

and C, is used as the sensation for coordination.  Agent A can move the upper arm and 

by  iterative  experience,  Q1  angle  is  taken  as  a  Hub  state  by  agent  B  to  trigger  its 

movement of the lower arm and thereafter, Q2 is considered by Agent C as a Hub state.

The incarnation of a complete multi-cellular infant starting from a single fertilised egg 

seems like a heavenly secret to all of us.  It is the initial set of genes in a fertilised egg that 

helps a simple cellular growth to be morphed into a complex combination of organs 
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found in a complete animal.  It is amazing that every cell contains a complete footprint 

of all genes found in the initial cell and only represents a single instance of the overall 

pattern.  According to [SALA00], it is considered that there is a pattern if different cells 

express the same gene at different levels, which can be called as the pattern gene.  Thus, 

most patterns are in fact combinations of a small number of basic patterns [SALA00].

The retention of state information within a homogeneous group of agents could also be 

described in relation to information patterns in genes.  A series of three dimensional cell 

growths in a predefined pattern could be represented by a chunk of information within a 

gene.  Hence, a gene may contain a sequence of such information chunks that generate 

cell  patterns.   It  is  the  combination  of  cell  patterns  that  create  useful  organs.   The 

creation of an organ may be done by concurrent creation of cell patterns connected with 

each other to create greater patterns.  The temporal synergy of starting and ending of 

each pattern within a collection of overlapped execution is of key importance.

Hubs as described earlier are important states using which the achievement of the final 

goal can be meaningfully descretised.  They basically define the start and end of a pattern. 

A high level task can be achieved by executing a hierarchy of basic patterns that are built 

on each other.  The temporal synchronisation of the concurrent execution of patterns to 

generate a meaningful  higher-level  pattern is an immense challenge.   The genes have 

gone though such level of pattern optimisation; however it has taken millions years of 

evolution for realisation.

The perception layers of a colony of agents could be integrated into a holistic abstraction 

to have the effects of Perceptual Integration.  This is quite different to the coordination 

discussed in the above sections where the agents perceive the environment individually 

and coordinate with the use of subsets of state information correlated through Hubs. 

The McGurk effect is perhaps the most convincing demonstration of the inter-sensory 

integration where one modality to radically change perceptions in another [COEN00]. 

Post-perceptual and multi-modal integration are two popular techniques for perceptual 

integration.   Post-perceptual  integration  occurs  in  systems  where  the  modalities  are 

treated as separately processed, increasingly abstracted pipelines and the outputs of these 

pipelines are integrated in a final  integrative step where as in multi-modal integration 

perceptual events are separated from the specific sensory mechanisms that generate them 
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and integrated into higher-level representation [COEN00].  The integration of modalities 

to  produce  a  unimodal  perception  that  produce  a  series  of  hierarchical  patterns  of 

sensations is of interest to the AAANTS model.

Implementation

The objective of formulating a generic learning methodology has been a prime objective 

of this research as mentioned earlier.  The concept of AAANTS describes the learning 

methodology starting from the basic sensation of a state.  A sensation can be of various 

nature  such as  sound,  vision,  taste,  smell  and touch.   We should be able  to further 

introduce any new sensation as far as it can be captured and quantified.  Complexity is 

introduced to the AAANTS system with the introduction of a colony of agents  that 

execute actions concurrently for the benefit of the colony.  Though each agent being 

simple and similar in structure, the model tries to prove that collective actions of simple 

agents paves the way to emergent behaviour.  The learning methodology performs an 

important role of embedding cooperative actions within agents with relation to the states 

of the environment.

In order to prove the  generic  nature of  the methodology,  implementation of  several 

experiments  were formulated by the  authors.   Foraging in  a  grid world,  robotic  arm 

movement and vision controlled navigation are the three major experiments and out of 

which only foraging related experimentation results were being analysed.  Foraging in a 

grid world was used for two types of experiments, namely, searching for the optimum 

path for a food source and transporting food items as a collective effort.  The robotic 

arm experiment uses an arm with three joints where each joint is controlled by a single 

agent.  To reach an object, all three joints should be moved in a coordinated manner. 

The vision navigation experiment uses a camera and two motors to control the direction 

of  movement  of  a  vehicle.   Its  objective  is  to  reach  a  destination  while  avoiding 

obstacles.

During  the  foraging  experiment,  Monte  Carlo  based  single  agent  optimum  path 

experiment was performed as a reference.  The collective search outperforms the single 
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agent  generic  reinforcement  learning  experiment  in  number  of  iterations  for 

convergence.  When the grid world was introduced with obstacles, the use of Hub states 

makes the collective search superior to single agent search.  Further, the advantage of 

using Hub states becomes apparent when obstacles were altered without modifying the 

goal state.  The agents converge towards the goal state within reasonably less iterations 

when compared to the generic experiments.

We are currently in the process of conducting analysis on the other two experiments.  In 

the robotic arm movement experiment, the angular movement of each joint with respect 

to the vertical  axis  and the  adjoining  joint  is  taken as  the reference.   Therefore,  the 

sensation  of  this  experiment  is  based  on  angle  in  degrees.   The  same  learning 

methodology used for foraging was applicable to this domain and the early results give a 

positive picture.  The last experiment based on vision navigation is still in the process of 

implementation and would require considerable amount of time to setup the computer 

vision related analysis.

Conclusions

The initial implementation of the AAANTS model was experimented without the use of 

Hubs.  The experiments performed on the three domains with the use of Hubs (foraging, 

robotic  arm  and  vision  navigation)  have  shown  considerable  improvements  when 

compared with the previous results.  The most valuable finding was in the use Hubs for 

coordination.   Though  our  experiments  were  restricted  for  pattern  search  within 

individual agents (anyway partner consciousness elements do keep a restricted repository 

of  information  related  to  others  in  the  community),  it  has  shown  remarkable 

improvement over cognitive approaches.

As  mentioned  earlier,  further  experiments  need  to  be  conducted  to  confirm  the 

applicability  of  Hubs to heterogeneous domains.   Further,  a methodology to identify 

Hubs across multiple agent instances of a synchronous group is a major improvement 

expect out of the AAANTS model in the future.  Together with this, exploration and 
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exploitation strategy has to be fine tuned to facilitate speedy convergence to dynamic 

changes in the environment.
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Abstract

Our work with the AAANTS (Adaptive,  Autonomous,  Agent colony  interactions  with  Network  

Transparent  Services)  project  attributes  to  developing  methodologies  for  demonstrating  intelligent  

behaviour in agent-based synthetic ecosystems.  The model gains wisdom from a very successful community  

life style found in the animal kingdom – the Ants.  The proposed model conceptualises and implements a 

colony of agents that actively interact with a collection of distributed services in order to provide adaptive  

behaviour.  We have implemented the AAANTS model on an Intelligent Environment related project  

and  built  a  prototype  for  an  intelligent  room that  actively  adapts  the  environmental  conditions  for  

individual  behavioural  patterns.   This   paper  discusses  the  architectural  and  design  aspects  of  the  

AAANTS model where the prime objective is to provide an agent framework to facilitate and sustain a  

distributed component based agent colony that depict intelligent and adaptive behaviour.
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Introduction

The AAANTS model uses the community life style of insects as the core inspiration and 

metaphor with further inspiration from “The Society of Mind” theory [MINS86]. The 

colony  of  agents  are  conceptualised  by  extracting  features  from  a  very  successful 

community life style found in the animal kingdom – the Ants.  Initially, an agent can be 

defined as an entity with perceptions, goals, cognition, actions, and domain knowledge, 

situated in an environment [STON98].  Ants together with many other insect species, is 

the centre of attraction in the study of artificial  life  due to their  individual  simplicity 

combined  with  relatively  complex  group  behaviour  [PARU97].   Ant  colonies  have 

evolved means of performing collective tasks, which are far beyond the capacities  of 

their  constituent  components.  They do so without  being  hard-wired together  in  any 

specific  architectural  pattern,  without  central  control.   The  consensus  is  that 

comprehension of emergent complexity in insect colonies such as Ants will serve as a 

good foundation for the study of emergent, collective behaviour in more advanced social 

organisms,  as  well  as  leading  to  new  practical  methods  in  distributed  computation 

[BABA01] [GARC01]. 

AAANTS model is primarily defined by a distributed colony of agent components that 

interact with a collection of services.  We understand components as an independently 

deliverable  package of  software  operations  that  can be  used to build  applications  or 

larger  components  [KNAP98].   A  service  can  be  any  type  of  a  component  bundle 

consisting of hardware and software that is networked with a defined access interface. 

The agents  in  AAANTS system are  given  sensory  and actuator  capabilities  by  these 

distributed heterogeneous services.  The services are called heterogeneous since they can 

be responsible for handling sensory and actuator data of different types such as video, 

audio, chemical,  motion etc.  Therefore, the colony can be envisaged as a distributed 

environment where collection of agents works in synergy while being mobile to specific 

colony locations during their life cycle [RANA02].

It is  clear that a typical  implementation of AAANTS model would need to focus on 

distribution, management and interfacing of agents, facilitators, and distributed services. 

The discussion in this paper concentrates on the architectural and design aspects of the 
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AAANTS model where the prime objective is to provide an agent framework to facilitate 

and  sustain  a  distributed  colony  of  agents.   The  agent  framework  concentrates  in 

providing  services  to  the  agent  colony  such  as  life-cycle  management,  agent 

reproduction, colony evolution, fault-tolerance, load balancing and mobility.

Design Considerations 

The  use  of  Design  Patterns  and  Frameworks  are  essential  for  building  systematic 

execution  environments  that  consist  of  distributed  myriad  of  components.   Design 

Patterns are descriptions of communicating objects and classes that are customized to 

solve a general design problem in a particular context [GAMM95].  Further, the rationale 

for  using  frameworks  is  to  build  cooperating  collection  of  entities  that  make  up  a 

reusable design for a specific  application domain where it  dictates the architecture of 

applications. A framework  defines the overall architecture, segmentation into objects, 

object  collaboration,  predefines design parameters common to its application domain 

and emphasizes design reuse over code reuse.  We use Patterns to construct primitive 

building blocks that are required to build a framework to facilitate design objectives of 

the AAANTS system.

We now explain the design variables that were taken into consideration for the AAANTS 

framework.   Our  selection  of  design  variables  was  based  on  those  presented  by 

[FARH97] as important variables of an agent system.  

Distribution  model –  The  method  of  distributing  application  functionality  among 

different types of agents that constitute the agent system.

Internal  structure  of  agents –  The  internal  constituents  of  an  agent  and  their 

interoperability to accomplish the desired functionality of an agent.

Control,  co-ordination  and  co-operation –  The  issues  of  inter-agent  and  intra-agent 

activities, process management and how agents achieve community wide goals.

Communication and knowledge sharing among agents – Inter-agent communication to 

share knowledge and to exchange information.
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Agent environment – Environment that is  complemented by the agent system.  The 

sensory  information  from  the  environment  is  useful  for  agent  decisions  and  their 

respective actions should be performed on the environment.

Adaptation  and  continuous  improvement –  Improvements  to  the  decision  making 

process of agents using the sensory information to provide a better service to the human 

users.

The Distribution model of the AAANTS system depicts hybrid characteristics of existing 

multi-agent  systems.  Each  agent  in  the  system is  not  a  fully  functional  component, 

though each would contribute towards the overall functionality. The distribution model 

of AAANTS system also adheres to the concept of “levels of organisation” [FERB99] in 

which one level can be embedded in another.  We shall use the term elementary component  

(module)  to  refer  to  units  at  the  lowest  level  of  decomposition  (in  terms  of  atomic 

functionality),  and the  term  multi-agent  system to  refer  to a  high-level  organisation not 

forming part of an organisation at a higher level than itself (Figure 1).  A module is called 

a lower level agent and in almost all occasions, a homogeneous group of such modules 

are responsible for a specific category of behaviour (e.g. opening a door, switch on a light 

and generating alerts).

Figure 1: Agent component organisation
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Societies considered as being complex, such as colonies of bees or ants, should not be 

considered as individuals in their own right if we wish to understand their organisation, 

regulation and evolution phenomena.  In terms of multi-agent systems, this means that 

an organisation can emerge from the juxtaposition of  individual  actions,  without  the 

necessity  to  define  a  specific  objective  [FERB99].   In  the  AAANTS  model,  the 

components  are arranged in  a  manner  that  the  outcome for  a  defined set  of  sensor 

information is generated by complex interactions among agent components.

The environment in which agents operate is represented by a list of distributed services. 

These services are embedded in the environment, which can be used as neural extensions 

by  the  agents  for  their  sensory  and  actuator  functionalities.   For  example,  there  are 

services that perform voice synthesis and recognition, video capturing, motion sensory 

and robotic services.  These heterogeneous services announce their capabilities within 

the network and interested agents could use them in their goal-driven activities.

In AAANTS framework, communication sub-system is a key necessity for the agents to 

co-ordinate and work as a group by communicating with each other to exchange current 

state of execution.  It is through communication that a group of agents can arrive at a 

final  set  of  actions  for  a  particular  situation  defined  by  a  collection  of  sensory 

information.

The design of  the AAANTS system has taken into consideration  the applicability  of 

cognitive  and  reactive  paradigms.   As  described  in  [FERB99],  there  is  actually  a 

continuum between the pure reactive agent, which reacts only to stimuli, and the entirely 

cognitive agent, which has a symbolic model of the world which it updates continually 

and based on which it plans all its actions.  AAANTS can be described as a hybrid agent 

system that derives wisdom from both reactive and deliberative architectures.

AAANTS Framework

An agent framework should initially facilitate an environment for inhabitant components 

to exhibit  expected agent characteristics.   Accordingly,  AAANTS framework provides 
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support  for  the  basic  properties  of  an  agent  such  as  autonomy,  communication, 

adaptiveness, goal-orientation, mobility and persistence.

There  is  already  quite  a  promising  collection  of  architectures  conceptualised  and 

implemented in the academic and commercial institutions related to BDI (Belief-Desire-

Intension),  Blackboard,  Subsumption,  etc  [FERB99].   We have  the  option  of  either 

reusing an existing architecture or designing a new agent framework altogether.  When 

the design objectives of the AAANTS model were considered, it became apparent that 

existing frameworks could not fully support the design requirements of the model under 

consideration.   Consequently,  we  have  formulated  a  new  architectural  framework 

especially designed to achieve design objectives of the AAANTS model.

A conceptual view of AAANTS architecture is depicted in figure 2.  The architecture has 

adopted a layered approach with three functional layers: the Distributed Services layer 

(DSL), Service Adaptation Layer, and Colony of Software Agents.  Each of these layers is 

composed of an egalitarian collection of components that interface in a dynamic manner. 

An obvious hurdle is to overcome interfacing among adjacent layers of the architecture 

while maintaining simplicity and dynamism.  As a solution to this, we have resorted to 

the  use  of  communication  middleware  that  support  heterogeneous  distributed 

components to interface with one another in simple and a dynamic fashion.  Each of the 

three layers of this architecture is described below.

Page 286 of 352



Appendices

Figure 2: Layered architecture of the AAANTS model [RANA01]

Distributed Services Layer (DSL)

The outer most layers in the AAANTS architecture is called as the Distributed Services 

Layer (DSL).  It is defined by a collection of components that directly interface with the 

external environment.   The  DSL contains all  the components necessary to sense and 

affect the natural environment. There are three categories of components in the DSL.

Sensory Services: The architecture uses these components to feed sensory information to 

the inner layers of the architecture.  The sensations are intercepted from different natural 

mediums  such  as  audio,  video,  touch,  temperature  and  motion  (e.g.  Camera,  a 

thermometer, GPS etc.).

Actuator Services: The actuator components are used to enforce agent behaviour on the 

external physical environment.  These components can perform actions that may change 

the  state  of  different  environment  mediums  (e.g.  Motorized  robot,  wireless  devices, 

home appliances).
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Interface  Services:  The  interface  components  enable  the  human  users  to  interact  and 

configure the internal state of the runtime model.(e.g.  PDA, WWW browser, wireless 

phones)

The above-mentioned service categories are heterogeneous in nature with reference to 

their functionality and execution platform (hardware and system software) [RANA99]. 

This  is  a  prerequisite  since  the  natural  environment  demands  such  flexibility  and 

robustness.  Heterogeneity introduces many problems during interfacing the DSL to the 

Colony of Software Agents.  These problems are addressed in the Service Adaptation 

Layer and are discussed next.

Service Adaptation Layer (SAL)

The Service Adaptation Layer deals with the issue of interoperability among the agents 

and their external environment.  It is mainly composed of three component categories: 

service  middleware,  service  semantic  parsers  and a distributed shared communication 

bus.  Service middleware concentrates on managing the existence of such as sensory, 

actuator and interface services.  Service middleware is very important for the robustness 

of the overall architecture since it mange the well-being of unreliable services in noisy 

environments.

The semantic parsers of service adaptation layer sits in the middle of service middleware 

and agent communication bus, and performs semantic mapping of the descriptions in 

both directions (i.e. Colony of Software Agents and DSL).  This is a requirement due to 

the heterogeneity of the sensory, actuator and interface services as described.  There exist 

separate semantic parsers for each sensation,  actuator and interface service categories 

described in DSL.

The agent communication bus is a distributed and shared communication channel built 

on Message Oriented Middleware (MOM) [TETI99].  It  is used to facilitate agent-to-

agent and agent-to-service messaging.   The content of information exchanged mainly 

consists  of  messages  addressed to  a  subject  among  publishers  and  subscribers.   We 

define subject as categorisation of an information bundle exchanged among services and 
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agents.   The publishers are responsible for formulating a self-describing message and 

thereafter  broadcasting  on  a  predefined  subject  whereas  the  consumers  listen  on  a 

subject to intercept messages of relevance.

Colony of Software Agents

The Colony  of  software  agents inhabits  the  innermost  layer  of  the  AAANTS 

architecture.  The agent layer comprises of modules, knowledge toolkits,  visualisation 

tools, utility agents and agent definition toolkit.  The Agent Colony Container provides 

the runtime environment for the agents.  Each agent module keeps its own resources and 

communicate with others using simple self-contained messages via the MOM.  Agents 

that belong to a homogeneous group publish and subscribe messages using predefined 

set of subjects.  Further, with the help of the services in the Agent Colony Container, the 

agents can periodically improve module fitness by using optimization techniques such as 

reproduction and evolution.

Implementation

The implementation of the AAANTS framework consists of distributed collection of 

Agent Colony Containers connected via the communication middleware.  The container 

is  a  run-time environment  that  contains  and executes  agent  related components  and 

provides  a  standard  set  of  services  such  as  component  life-cycle  management, 

performance  and  process  distribution  management,  directory  services,  deployment 

management and communication service interfaces.

We  have  found  that  creational  and  structural  design  patterns  such  as  the  Abstract 

Factory, Adapter, Facade and Builder [GAMM95] are very useful during the design of a 

container framework where it helps to create a system, independent of how objects are 

created,  composed,  and  represented.   Therefore,  in  an  Agent  Co`lony  Container, 

primitive agents of different types are instantiated using a series of factory classes.
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We now explain the different segments of components found in a typical  AAANTS 

implementation.  System Definition Components (SDC) is a broad term representing 

a collection of application tools that can be used to define an initial agent colony.  Using 

the SDC an administrator can initially create an agent colony for a specific purpose and 

later change the definition to introduce new features to the system.  System Execution 

and  Control  Components  (SECC) represents  the  core  of  the  implementation 

consisting  of  containers,  agents,  communication  sub-system,  and distributed services. 

System Monitoring and Visualisation Components (SMVC) (figure 3) is a set of tools 

used by the administrators and end users to interact with an active agent system.  The 

agents found in SECC also use SMVC for user notification and feedback.

The user interaction with AAANTS implementation uses heterogeneous interfaces such 

as stand-alone clients, web browsers, and PDA clients.  These interfaces allow the agent 

colony  to  actively  communicate  with  the  user  for  notification,  confirmation,  and 

configuration.  Users are also responsible for maintaining some of the mobile services 

such as Global Positioning Systems (GPS), mobile phones and PDAs’, in a ubiquitous 

manner are used by agents for decision-making.

The  (figure  4) shows  a  photograph  of  the  AAANTS  prototype  in  operation  in  an 

Intelligent Environment (IE) condition for an individual human being.  The AAANTS 

system  is  implemented  in  Java  on  Windows  platform.   CORBA  was  used  as  the 

communication  middleware  to facilitate  communication  among distributed  containers 

and  services.   Initially  we  tested  the  system with  JESS and Fuzzy  JESS  toolkits  for 

implementing  adaptive  and  decision-making  properties  of  the  agents.    Our  final 

objective  is  to  extend  the  system  so  that  it  can  be  used  to  provide  an  intelligent 

environment for a group of people that inhabit a common geographical location.  Here 

we have to take into consideration the heterogeneous behaviour of individuals under the 

same environmental conditions (sensations) and how the AAANTS system can adapt to 

provide intelligent changes to the environment that are most appropriate to the majority 

of people. 
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Figure 3: A view of AAANTS SMVC

Related Systems and Technology

Several simulation platforms have similar objectives to the framework presented in this 

paper such as JADE [BELL98], MadKit [FERB02], Anthill [BABA01], Hive [MINA99] 

and  Amalthaea  [ALEX96].   JADE  is  a  software  framework  that  facilitates  the 

development  of  agent  applications  in  compliance  with  the  FIPA  specifications  for 

interoperable  intelligent  multi-agent  systems  [BELL98].   AAANTS  framework  uses 

containers, communication sub-system and facilitator services in a manner similar to that 

used  by  JADE  but  differs  in  aspects  such  as  the  use  of  CORBA  over  RMI  for 

communication,  use of a simpler inter-agent communication language and the use of 

reproductive  and evolutionary services for periodic  optimisations in  the overall  agent 

system.

MadKit implementation too has some similarities  to AAANTS in terms of its  use of 

containers, communication sub-system and facilitator services.  But it is built around the 

concept  of  “micro  kernel”  and  “agentification  of  services”  [FERB02].  The  MadKit 

kernel  is  rather small,  but agents offer  the important services one needs for its  own 

application  such  as  distribution  and  remote  message  passing  and  monitoring  and 

observation  of  agents.   Most  of  these  services  are  provided  by  the  Agent  Colony 

Page 291 of 352



Appendices

Container  (similar  to the micro kernel)  in the AAANTS model and uses CORBA as 

distributed middleware instead of proprietary “MadKitdistribution” mechanisms.

Figure 4: AAANTS prototype for an intelligent environment

Other related implementations such as “Anthill” [BABA01] conceptualises a nest, which 

is similar to that of the Agent Colony Container.  However, the AAANTS container does 

not  distinguish  a  single  instance  of  a  container  as  a  nest,  since  a  single  nest  can be 

distributed over multiple containers, which are linked by a communication sub-system.

Conclusions and Implications

In this paper, we have presented the architectural design of the AAANTS model that is 

inspired from natural ant colony.  AAANTS is a general-purpose hybrid agent model 
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since  it  has  the  capability  to  interact  with  heterogeneous  services  and  has  shown 

remarkable improvements over other functional  monolithic  agent models in terms of 

adaptability and knowledge/component reusability.

The AAANTS framework,  with the  use  of  a  component  container  will  be  useful  in 

providing services such as life-cycle management, agent reproduction, colony evolution, 

fault-tolerance,  load  balancing  and  mobility  to  the  agent  components.   Another 

advantage of the framework is the separation of common and redundant functionality 

from  agent  components  to  a  single  layer  for  common  usage.   The  Agent  Colony 

Container was successful in providing an environment to the agent components to depict 

characteristics such as autonomy, adaptability, mobility, discourse and responsiveness.

The implementation phase has proven that the use of the Service Adaptation Layer for 

interfacing  has  helped  to  overcome  the  inter-operability  issues  among  agents  and 

services.  It was apparent from the implementation that this layer excludes the need for 

brokering  and  matchmaking  services  present  in  traditional  deliberative  architectures, 

since it offers subject based self-describing messages.

The AAANTS model has helped us to observe emergent behaviour similar to that of a 

natural ant colony. These agents sense the environment and communicate with others 

using  primitive  message  constructs  to  offer  emergent  adaptive  behaviour  as  a 

community.
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Abstract 

Our work with the AAANTS (Adaptive, Autonomous, Agent colony interactions with 

Network  Transparent  Services)  project  attributes  to  developing  methodologies  for 

demonstrating collective intelligent behaviour in agent-based synthetic ecosystems.  The 

model gains wisdom from a very successful community life style found in the animal 

kingdom – the Ants.  The proposed model is a multi-agent system that conceptualises 

and implements a colony of agents that actively interact with a collection of distributed 

services in order to provide adaptive behaviour.  We have implemented the AAANTS 

model  on  an  Intelligent  Environment  related  project  and  built  a  prototype  for  an 

Intelligent  Room  that  actively  adapts  the  environmental  conditions  based  on  user 

behavioural  patterns.   The  paper  discusses  the  knowledge  representation  based  on 

“Frames” that harmonise with continuous adaptation based on Reinforcement Learning 

techniques. 

Introduction

Multi-agent  systems  consist  of  agents  that  work  in  harmony  and synergy  to  achieve 

community wide goals.  An agent can be considered as an entity with perceptions, goals, 

cognition, actions, and domain knowledge, situated in an environment [18].  The colony 

of agents discussed in this paper is conceptualised after a very successful community life 

style found in the animal kingdom – the Ants.  Ants together with many other insect 

species, occupy a central place in artificial life due to their individual simplicity combined 

with  their  relatively  complex  group  behaviour  [13].   Ant  colonies  have  evolved  to 

perform  collective  tasks,  which  are  far  beyond  the  capacities  of  their  constituent 

components. They do so without being hard-wired together in any specific architectural 

pattern,  without  central  control.   The consensus  is  that  comprehension  of  emergent 

complexity in insect colonies such as Ants will serve as a good foundation for the study 

of emergent, collective behaviour in more advanced social organisms [2] [10], as well as 

leading to new practical methods in distributed computation. 

The Society of Mind theory [12] further portrays the mind as a collection of mindless 

components  that  enter  into  competition  and  interaction  to  provide  reasoning  and 
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meaning to the surrounding world.  Here too we encounter collective group behaviour 

and emergent complexity as found in the natural insect colonies.

Knowledge representation is one of the most important considerations while designing 

and  implementing  multi-agent  systems.   There  are  several  successful  approaches 

conceptualised  and  implemented  for  knowledge  representation  such  as  cognitive, 

connectionist  and  interactionist  paradigms  [23].   Among  them  the  interactionist 

hypotheses postulates the knowledge being represented inside individual agents within a 

multi-agent  system.   The  AAANTS  model  uses  a  knowledge  representation  that  is 

derived from the concept of a frame. A Frame is defined as a structure for representing a 

stereotyped situation or structure that represents knowledge about a limited aspect of the 

world [22].  An important intuition underlying frame systems is the belief that people 

cope with new situations by retrieving information that was stored based on previous 

experiences in situations that were in some sense similar to the present situation [25].

AAANTS is  a  multi-agent system where  each colony  is  modelled,  as  a  collection  of 

heterogeneous  agents  distinguished  by  their  differences  in  ontology,  behaviour, 

knowledge  and  goals.   Heterogeneity  creates  the  problem  of  defining  new  agent 

behaviour  for  each agent  introduced  to  the  existing  agent  society.  This  is  solved  by 

building a framework for rationalising agent engineering so each agent does not have to 

be constructed from scratch in ad-hoc ways.  In our approach, we have used reusable 

architectural components with reusable agent behaviours to construct new agents. 

Knowledge Representation

Agents within the AAANTS model are responsible for maintaining knowledge specific 

structures  and  content  required  for  their  individual  behaviour.  AAANTS knowledge 

representation methodology has combined frame-based Uniframers and Accumulators 

[12]  to  complement  the  learning  achieved  through  Reinforcement  Learning  (RL) 

techniques.  Agents keep frames representing the different states of activation.  Each 

state relates to a value function that indicates the expected future rewards that initiates 

from this state.  A correct mapping of a state signal from the environment would trigger 

an action of the highest expected reward.

Page 297 of 352



Appendices

An individual agent consists of a Communication Manager, a Knowledge Manager and a 

Frame-based  Knowledge  Structure  as  depicted  in  (figure  1).   The  knowledge 

representation adopts an interacting framework where knowledge is embedded within 

the individual agents.  Each frame represents a stereotype situation or a structure in the 

environment.   Frames are related to each other through object-oriented relationships 

such as  containment,  aggregation  and inheritance.   These  relationships  are  described 

during  the  knowledge  definition  stage  and  thereafter  maintained  by  Frame  Relation 

Manager during the execution stage.

Figure 1: Conceptual knowledge representation using an enhanced frame based representation

Non-Intentional Cooperative Behavior

Agents within the AAANTS model are described as an adaptive and autonomous entity 

that can sense and act on the environment.  The agents in the AAANTS Colony are 

segmented into groups that share common behaviour and ontologies or in other words, a 

group of agents is responsible for a spectrum of homogeneous behaviour.  For example, 

the behaviour of activating a lamp can be undertaken by a collection of agents that may 

be triggered by different environment conditions such as darkness, during user trying to 

read a book, intruder identification.  The state of the environment sensed through the 

embedded services is responsible for activating suitable agent behaviour [16].  Therefore 

it become obvious that interaction among agents especially within a homogeneous group 

is necessary for adaptation and appropriate selection of actions.
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Communication is the key facilitator for interaction within entities of an agent system. 

According to [6], typical agent communication language can be divided into three layers 

consisting of Content Layer, Message Layer and Communication Layer.  We also have 

used a similar segmentation to handle complexity during agent interoperability  (figure 2). 

Initially  a  Communication  Layer  is  used  for  interaction  among  components  such  as 

agents,  services,  administration  and  monitoring.   This  layer  combines  distributed 

locations in the agent colony and services embedded within the environment.

The Message Layer consists of encapsulated message packets that contain a header and 

content  information.   Sensory  signals  published  by  distributed  services  and  actuator 

signals published by the agents are disseminated in the network on a predefined subject 

[14].  The subject  together  with other  Meta  information  is  represented  in  the  header 

portion of the message where a subject simply represents a homogeneous collection of 

sensations and behaviours that is  attached to each message.  The agents and services 

publish, subscribe and intercept messages on a subject of interest. This concept adheres 

to the Observer Pattern as described in [9].    

 Figure 2: Shared Communication Channel among agent communities

We  define  the  cooperative  behaviour  of  agents  in  the  AAANTS  system  as  non-

intentional,  due  to  non-existence  of  intentional  direct  communication  among  agents 

using an accepted agent  communication  language.   Agent interaction is  facilitated by 

message  exchanges  disseminated  in  the  network  where  the  interested  agents  are 

responsible  for  intercepting  and  processing  published  messages  to  exhibit  further 
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behaviour.  This methodology enables information sharing among a group and the ability 

to  influence  behaviour  on  others  without  explicit  knowledge  about  the  participants: 

thereby making the interactions,  non-intentional.   We adopted this methodology with 

reference  to  the  interaction  mechanisms  found  in  insect  colonies  with  the  use  of 

chemicals such as pheromones in Ants.

Adaptation Techniques

The  environment  of  the  AAANTS  system  approximates  Markov  state  [24].   The 

objective  of  achieving  Markov state  is  impractical  due to  the  complexity  of  sensory 

information found in a natural environment.

Initially we need to consider the interactions between the agent and the environment.  As 

observed in [3], KQML and FIPA ACL use may be too complicated for the kinds of 

applications that are envisaged to be present in the non-cognitive based systems as they 

do not need speech acts and logic to carry out their negotiations.  Consequently, we have 

observed that this argument is applicable to the proposed methodology of interaction in 

the AAANTS system as well.

Ontology  plays  a  prime  role  during  agent  interactions  to  facilitate  proper  semantics 

among the participants.  In a multi-agent system, the term Ontology can be given a more 

practical definition as the declarative knowledge that represents the significant concept 

attributes and values within the application domain [5].  Ontology defines the basic terms 

and relations comprising the vocabulary of a topic area or meta-data dictionary, as well as 

the rules for combining terms and relations to define extensions to the vocabulary [7] 

[20].

Multi-agent systems based on the reactive paradigm do not make use of ontological basis 

of knowledge sharing to the extent used by cognitive  / deliberative paradigms.  The 

proposed AAANTS model though being simple in terms of depth, flavour and nature of 

inter-agent  communication,  use  ontological  commitments  during  message  exchange 

among homogeneous groups.
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We  have  used  Reinforcement  Learning  techniques  to  provide  adaptive  nature  of 

behaviour  to  the  AAANTS model.   In  the  AAANTS model,  the  agent-environment 

interaction is broken down to episodes that are demarcated by an Initial and a Terminal 

state. There can be several simultaneous on going episodes at a given time.  For example, 

there can be an episode that is responsible for adapting the environment during a user 

entry to the Intelligent Room.  The Initial state is defined by capturing of a geometric 

figure of a human or unique identification of a user by finger print scanner.   Subsequent 

to  the  Initial  state,  the  group  of  agents  may  depict  behaviour  to  activate  lights,  air 

conditioning and other appliances.  The Terminal state of the episode may be defined by 

recognising the user being seated at his/her working position.  After the Terminal state, 

the user can value the actions taken by the system and provide a scalar value to indicate 

the level of satisfaction.  This value acts as the reinforcement to the group of agents that 

were responsible for the activity.  Reinforcement is not always mandatory since it could 

become a nuisance for the user to supply feedback after each episode.  The system is 

designed to exponentially reduce the interaction frequency for reinforcement with the 

user.

The sensory signals and respective actions need to be traced in order to assign rewards 

during  reinforcement  phase.   Therefore,  each  message  signal  is  assigned  a  unique 

identifier for later recognition.  However, a given sensory signal can be complemented 

with a collection of actions executed linearly, contributed by a collection of agents.  This 

situation  gives  birth  to  the  problem  of  assigning  reward  to  agents  for  each  atomic 

activity.

The  distribution  of  actions  among  several  agents  and  the  application  of  the 

reinforcement function to democratically distribute reward among them, introduce some 

complexity  to the  AAANTS model.   We have initially  implemented  a  Pure  Delayed 

Reward class of reinforcement function [19] to assign the average scalar reward to all 

participant agents for their individual actions after a Terminal state has reached.  The 

Action History Service (AHS) implemented in the AAANTS framework keeps track of 

all  the  information  related  to state,  action  and reinforcement  of  each episode.   The 

Reward Assignment Service (RAS) consults the AHS to gather the agent identifications 
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deserving reward since there exists a homogeneous agent group responsible for particular 

category of behaviour.

The User Interaction Subsystem (UIS) facilitates the user to reward a total episode after 

the terminal state has reached.  Furthermore, the use can provide reward for individual 

actions  carried  out  with  a  defined  episode.   For  example,  the  activation  of  the  air 

conditioner  during  evening  (assuming  the  natural  conditioning  is  favourable)  can  be 

given negative reward to discourage its inhibition during future interaction of the same 

episode of entering a room.
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Implementation

Implementation  of  the  AAANTS  model  can  be  broadly  categorised  into  the 

development of a distributed agent framework, communication subsystem, ubiquitous 

services, user interaction modules and knowledge representation and adaptation toolkit.

The Framework and Communication Subsystem

The implementation of the AAANTS framework consists of a distributed collection of 

Agent Colony Containers connected via communication middleware.  The container is a 

run-time environment that executes agent related components and provides a standard 

set  of  services  such  as  component  life-cycle  management,  performance  and  process 

distribution  management,  directory  services,  deployment  management,  mobility  and 

communication service interfaces.

We  have  found  that  creational  and  structural  design  patterns  such  as  the  Abstract 

Factory,  Adapter,  Facade  and  Builder  [9]  are  very  useful  during  the  design  of  the 

AAANTS framework.  These  patterns  help  to  create  a  system,  independent  of  how 

objects  are  created,  composed,  and  represented.   Therefore,  within  the  container, 

primitive agents of different types are instantiated using a series of factory classes.  A 

single instance of a container is analogous to an insect colony found in the natural world. 

The model is further extended to distribute a colony among several distributed locations 

to achieve benefits of a distributed system.

The agents within the AAANTS model are location transparent due to the presence of a 

communication  subsystem.   The  communication  subsystem,  as  discussed  earlier  is 

segmented  into  Content,  Message  and  Communication  Layers  together  with  some 

system  level  services.   The  Communication  Layer  is  implemented  using  UDP 

multicasting  as  it  enables  information  publishers  to  disseminate  a  single  message  to 

multiple subscribers thereby eliminating redundant retransmission of messages found in 

a Unicast protocol such as TCP/IP.  We have used two multicasting groups to separate 
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messages into sensory and actuator origin.  This separation has been intentionally done 

due to the high traffic rate expected in the sensory channel.  

Ubiquitous Services and User Interaction

The environment is represented by services written in different programming languages 

such as C, C++ and Java due to the availability of APIs.  We have selected some basic 

level  sensory services such as Motion Sensor,  Sound Sensor,  and Infrared Sensor for 

remote  control  commands  and  a  Voice  Recognition  Engine  developed  on  IBM 

ViaVoice.  Each of these services, though heterogeneous in functionality, merges into a 

single level of interaction through a XML based messaging.  We have also developed few 

actuator services based on a robotic toolkit (Lego Mindstorms), Voice Synthesis Engine 

(based on IBM ViaVoice), Text message sender for GSM mobile phones and X10 based 

electronic appliance controller.

The user interaction with AAANTS implementation uses heterogeneous interfaces such 

as stand-alone, Internet, and PDA clients.  These interfaces allow the agent colony to 

actively communicate with the user for notification, confirmation, and configuration.  In 

the future the users may also be responsible for maintaining some of the services such as 

Global Positioning Systems (GPS), PDA, and mobile phones in a ubiquitous manner, 

that are used by agents for decision making and assistance.

Knowledge and Adaptation

We have developed a Toolkit using Java for facilitating RL techniques and frame-based 

representations.  The Toolkit is used by each agent instance within the AAANTS colony. 

Furthermore, the framework implements some services that complement the adaptive 

behaviour  of  agents.  The  AHS  and  RAS  help  during  real-time  adaptations  and  the 

Knowledge  Summary  Daemon  (KSD)  periodically  summarises  the  knowledge  into 

Uniframes.   KSD  is  a  framework  level  service  that  triggers  based  on  memory 

consumption of frame instances.
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Our experiments have shown that an accumulation of frame instances over a period of 

time has hindered performance and response time and further deviated from real-time 

feedback.  Therefore, we have devised a periodic evolutionary mechanism (KSD) that 

summarises the accumulated state of each agent to Uniframes.

The Prototype

We  have  developed  a  prototype  of  the  AAANTS  model  to  simulate  an  intelligent 

environment – “Intelligent Room” (Figure 3).  The prototype consists of sensory and 

actuator services.  The testing phase initially  used a tool (Pattern Definition Tool)  to 

define different sensory patterns into a pattern script, which could be used by the Pattern 

Simulation Engine to simulate past user behaviour.

Thereafter, we tested the system within natural environment conditions of a room for a 

single user interaction.  We initially developed an action plan of the behaviours to be 

carried out by the user together with expected adaptive behaviour from the environment. 

We were able to gain a higher level of correlation to forecasted behaviour on real-time 

user interactions with the system.  We have identified that the redundancy of similar 

frame instances among several homogeneous agents seems to hinder the accuracy and 

performance of the overall system.  We are in the process of improving the functionality 

of the KSD service to periodically enhance the suitability of agents within the colony by 

eliminating unfit agents and thereby reducing conflicting frame instances.

Our  research  also  focuses  on  extending  the  system  to  demonstrate  a  distributed 

intelligent  environment with the interaction of  a  mobile  user.   We have developed a 

prototype of a mobile user interaction application on a PDA with wireless access to the 

agent system.  We have interfaced a Global  Positioning System (GPS) to the mobile 

application  to  feed  location-based  sensory  information  to  the  agent  system.   Our 

objective is to test AAANTS capabilities in providing intelligent behaviour based on past 

activities performed within defined locations.
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Figure 3: AAANTS simulation and testing environment

Related Work

[1] describes an agent selection mechanism similar to the strategy adopted within the 

AAANTS  model.   Here  the  agents  that  compose  the  ecosystem  operate  under  a 

penalty/reward strategy; supported by the notion of “credit” that is assigned indirectly by 

the  user depending on the system performance.   The user gives  a feed back on the 

suitability of an item in the object.  The system relates this feedback to the filtering agent 

that propose the item and the discovery agent that retrieved it and assigns the credit. 

The AAANTS model is extended further so that the end-user is able to rank actions of 

many other  agents  other  than  the  fittest.   The argument  is  that  there  can  be  better 

suggestions from the agent other than the best.  But it would be impractical for the end-

user to rank all the participating agents every time.  Hence the user should be given the 

facility to change the threshold of the number of agents that he/she can handle.  For 

example a user may decide to interact with only the top three ranked agents during a 

busy meeting and later decide to evaluate more agents as time permits.

Agent Network for Task Scheduling (ANTS) [17][21], is a distributed agent-based system 

that  can  assist  human  decision  making  efficiently,  allowing  material  flow  and  task 

scheduling to emerge in a manufacturing assembly environment.  ANTS uses techniques 

inspired both by free market economics and insect colonies, specifically a contract net 
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that uses a new mechanism called least Commitment Scheduling that defers decisions on 

process sequences until the last possible moment.

Several simulation platforms have similar objectives to the framework presented in this 

paper such as JADE [4], MadKit [8], Anthill [2], Hive [11] and Amalthaea [1].  JADE is a 

software framework that facilitates the development of agent applications in compliance 

with  the  FIPA  specifications  for  interoperable  intelligent  multi-agent  systems  [4]. 

AAANTS framework uses containers, communication sub-system and facilitator services 

in a manner similar to that used by JADE but it differs in aspects such as the use of 

multicast  technique  for  communication,  use  of  a  simpler  inter-agent  communication 

language  and  the  use  of  reproductive  and  evolutionary  services  [15] for  periodic 

optimisations in the overall agent system.

MadKit implementation too has some similarities to AAANTS model in terms of its use 

of containers, communication sub-system and facilitator services.  But it is built around 

the concept of “micro kernel” and “agentification of services” [8]. The MadKit kernel is 

rather small, but agents offer the important services one needs for its own application 

such as  distribution and remote message passing  and monitoring  and observation of 

agents.  Most of these services are provided by the Agent Colony Container (similar to 

the  micro  kernel)  in  the  AAANTS  model  and  uses  multicast  based  distributed 

middleware instead of “MadKitdistribution” mechanisms.

Other  related  implementations  such  as  “Anthill”  [2]  conceptualises  a  nest,  which  is 

similar to that of the Agent Colony Container.  However, the AAANTS container does 

not  distinguish  a  single  instance  of  a  container  as  a  nest,  since  a  single  nest  can be 

distributed over multiple containers, which are linked by a communication sub-system.

Conclusions and Implications

In this paper we have presented the theory, design and implementation of a colony of 

agents in terms of knowledge representation, adaptation and architecture.  AAANTS is a 

general-purpose hybrid agent model that has the capability to interact with ubiquitous 

services  embedded  in  the  environment.  AAANTS  model  has  shown  remarkable 
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improvements over other functional monolithic agent models in terms of adaptability 

and knowledge/component reusability.

The core implementation is based on a component based distributed framework.  The 

agent  components  in  the  AAANTS model  are  designed to interact  with information 

sources from heterogeneous domains.  We were able to model the information sources 

as heterogeneous services that actively interface with the core implementation with the 

help of message based communication middleware.

In  the  AAANTS  architecture,  we  used  an  adaptation  layer  that  conceptualises 

pheromones that act as the sole communication medium in a typical insect colony such 

as  the  ants.   The  implementation  has  proven  that  the  use  of  the  adaptation  layer 

functionality  for  interfacing  has  helped  to  overcome  the  conflicts  faced  in 

communication among agents and services.  It was apparent from the implementation 

that the adaptation layer excludes the need for brokering and matchmaking services that 

are present in traditional deliberative architectures.

The AAANTS framework implementation is a distributed component based model that 

facilitates  the  well-being  of  a  myriad  of  agent  components.   The  framework  was 

successful  in  providing  services  such  as  life-cycle  management,  agent  reproduction, 

colony evolution, fault-tolerance, load balancing and mobility to the agent components. 

Another  advantage  of  the  framework  is  the  separation  of  common  and  redundant 

functionality from agent components to a single layer for common usage.

The  current  implementation  of  the  AAANTS  model  has  succeeded  in  distributing 

knowledge and linearly sequencing actions within an episode among several agents.  The 

user ability  to reward an individual  action within an episode has enabled to properly 

adjust the value function of a state so that the sequence of actions adapt to the optimal 

pattern over a period.

However,  we  have  identified  during  qualitative  testing  that  there  are  anomalous 

behaviour  during  execution  of  simultaneous  episodes.   We have identified  that  state 

conflicts during activation of same agent instance contribute to such behaviour.  We are 

in  the  process  of  incorporating  further  evolutionary  behaviour  that  can  periodically 
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enhance the agent colony activities.  Further we are enhancing the PDA based UIS to 

introduce a location based service with a help of a GPS.

Finally, AAANTS model has helped us to observe emergent behaviour similar to that of 

a natural ant colony. These agents sense the environment and communicate with others 

using  primitive  message  constructs  to  offer  emergent  adaptive  behaviour  as  a 

community.
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Abstract

Our work with the AAANTS (Adaptive,  Autonomous,  Agent colony  interactions  with  Network  

Transparent Services) project applies knowledge gathered from the study of natural community life styles,  

for e.g. Ants, to developing methodologies for intelligent behaviour in agent-based synthetic ecosystems.  

This paper discusses the feasibility and implications of using non-intentional interactions among entities  

in  a multi-agent system to  coordinate  collective  behaviour  as  opposed to  agent  interaction  techniques  

adapted in common deliberative multi-agent systems.  The implementation of AAANTS model within  

the framework of an Intelligent Environment has confirmed the ability of multitude of loosely coupled  

egalitarian  collection  of  agents  to  depict  adaptive  cooperative  behaviour  using  a  non-intentional  

communication model.

Introduction

Ants like many other insect species, occupy a central place in artificial life due to their 

individual simplicity combined with their relatively complex group behaviour [12].  Ant 

colonies have evolved means of performing collective tasks, which are far beyond the 

capacities  of  their  constituent  components.  They  do  so  without  being  hard-wired 

together in any specific architectural pattern, without central control.
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According  to [7],  the  amazing  success  of  the  Ants  is  due to the  swiftly  applied and 

overwhelming  power  arising  from  the  cooperation  of  colony  members.   Ants,  like 

humans, succeed because they talk so well [7].  Further, an Ant colony can be regarded as 

a super organism where it can be analysed as a coherent unit and compared with the 

organism in design of experiments, with individuals treated as the rough analogues of 

cells [7].

AAANTS model conceptualises a multi-agent system, i.e. a Colony of Agents, consisting of 

autonomous  software  components  resembling  agent  characteristics  that  work  in 

harmony and synergy to achieve community wide goals [13].  At present, an introductory 

level definition can be given to an agent as an entity with perceptions, goals, cognition, 

actions, and domain knowledge, situated in an environment [17].  AAANTS model uses 

the community life style of insects as a metaphor with further inspiration from “The 

Society of Mind” theory [10].  The components in the AAANTS model can be broadly 

segmented into a collection of agents and a distributed collection of embedded services. 

The  services  act  as  a  neural  extension  to  the  agents  in  providing  real-time  sensory 

information from the natural environment.

We have positioned AAANTS as a hybrid model due to the presence of features from 

both deliberative and reactive paradigms. The hybrid nature of the system is prominently 

demonstrated  in  areas  of  knowledge  representation,  agent  interaction,  and  adaptive 

nature in terms of learning and periodic evolution.  

The  AAANTS  model  has  gone  through  several  stages  of  modelling,  framework 

development,  knowledge-representation techniques, learning methods and cooperation 

strategies, during the past.  We have found out that the coordination strategy remains as 

the core focus during any team work environment and other methodologies should be 

moulded to complement it.   In the AAANTS model,  we try to make the interaction 

simple by eliminating explicit active communication adapted by most deliberative agent 

models [14].  In the rest of the paper, we describe the nature of communication found in 

the AAANTS model and how it  contributes  to the overall  cohesiveness and synergy 

expected by a multi-agent system.
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Reasons for Cooperation?

Cooperative behaviour among collection of individuals has been the cornerstone for the 

success of human beings’ ability to conquer complexity. This is evident when analysing 

many important historical moments ranging from wars to innovative designs.  A multi-

agent system too, is composed of several units of autonomous entities that interact to 

achieve a collective goal. Without cooperation, an agent is merely an isolated individual, 

closed into  its  perception-deliberation-action loop [4].   Therefore,  co-operation  is  an 

important factor to the success in a multi-agent system.  

Further, we need to clarify the ambiguity of the terms co-operation and co-ordination. 

Co-ordination  is  a  process  which  agents  engage  in  order  to  ensure  a  community  of 

individual  agents  act  in  a  coherent manner.   Co-ordination,  in  turn,  may require co-

operation;  but it  is  important to emphasize  that  co-operation  among a set  of  agents 

would  not  necessarily  result  in  co-ordination;  indeed,  it  may  result  in  incoherent 

behaviour [11].  According to [11], the reasons for co-ordination are, preventing anarchy 

or  chaos,  meeting  global  constraints,  distributed  expertise,  resources  or  information, 

dependencies among agent actions, and efficiency.

Mechanisms  for  Cooperative  Behaviour  in  Multi-agent 

Systems

Communication  facilitates  sharing  of  intelligence,  negotiations,  collaboration  and co-

ordination.  Software agents use a communication language for similar purposes. The 

main  reason  for  communication  may  vary  depending  on  the  purpose  of  an  agent’s 

existence.   The  main  substance  of  agent  communication  is  defined  in  an  Agent 

Communication Language (ACL) [8].  An ACL enables software agents with ontological 

[3]  [18]  similarities  to  communicate  with  each  other  via  an  extensible  set  of 

“performatives” expressing beliefs and attitudes towards some information elements. A 

performative specifies the format of any given message and dictates how an agent should 

respond to messages. Two popular communication languages are the Knowledge Query 
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and Mark-up Language (KQML) and Agent Communication Language (FIPA ACL) [8] 

[9] [2].

The  break  down of  predefined  tasks  found  in  cognitive  agents  can  be  managed  by 

centralising the allocation process or by distributing it among all the agents concerned. 

The centralised and distributed approaches are concerned with the allocation of tasks by 

cognitive agents capable of intentionally communicating with each other [4].  In contrast, 

reactive  agents  use  the  concept  of  signals,  which  are  non-intentional  forms  of 

communication, sent by diffusion and propagation into the environment.  The proposed 

AAANTS model conceptualises  its  communication  model  based on these elementary 

form of communication found in reactive paradigms.

According  to  [6]  [16],  Agent  Communication  Languages  can  best  be  thought  of  as 

consisting of three parts - its vocabulary, an ``inner language'' such as KIF (Knowledge 

Interchange  Format),  and  an ``outer''  language such as  KQML or  FIPA-ACL.   For 

example an ACL message can be a KQML expression in which the ``arguments''  are 

terms or sentences in KIF formed from words in the ACL vocabulary.

According to [1], KQML and FIPA-ACL use may be too complicated for some kinds of 

applications that do not need speech acts and logic to carry out their negotiations.  We 

embrace this observation for the proposed methodology of interaction in the AAANTS 

model.  The  AAANTS  model  possesses  capabilities  to  simplify  the  coordinated 

interaction by eliminating  explicit  active communication adapted by most deliberative 

agent models.

Multi-agent systems based on the reactive paradigm do not make use of ontological basis 

of knowledge sharing to the extent used by cognitive  / deliberative paradigms.  The 

proposed AAANTS model though being simple in terms of depth, flavour and nature of 

inter-agent communication, uses ontologies during communication.

Non-Intentional Cooperative Behaviour

The agents  in  the  AAANTS Colony  are  segmented into  groups  that  share  common 

behaviour  and  ontologies.  In  other  words,  a  group  of  agents  is  responsible  for  a 
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spectrum of homogeneous behaviour.  For example, the behaviour of activating a lamp 

is undertaken by a collection of agents that may be triggered by different environment 

conditions such as darkness, during user trying to read a book or intruder detection. 

Therefore,  the  state  of  the  environment  sensed  through  the  embedded  services  is 

responsible for activating suitable agent behaviour.

Message Structure

According to [2], a typical agent communication language can be divided into three layers 

consisting of Content Layer, Message Layer and Communication Layer (Figure 1).  In the 

AAANTS model too, we have used similar segmentation to handle complexity during 

agent  interoperability.   Initially  a  communication  layer  is  used for  interaction  among 

components  such as  agents,  services  and administrator/monitoring  tools.   This  layer 

combines distributed locations within the agent colony and services embedded in the 

environment.

The Message Layer consists of encapsulated message packets that contain a header and 

content  information.   Sensory  signals  published  by  distributed  services  and  actuator 

signals published by the agents are disseminated in the network on a predefined subject. 

The subject together with other meta information is represented in the header portion of 

the message.  The agents and services could publish, subscribe and intercept messages on 

a subject of interest. This concept adheres to the Observer Pattern as described in [5].  A 

subject simply represents a homogeneous collection of sensations or behaviours that is 

attached to each message.   Subjects  are organised in a hierarchy so that  a consumer 

listening to a parent subject  may intercept all  inherited messages classified under the 

parent and can be formulated as listed below.

S1 = {x: x is a subject}

S2 = {x: x is a subject}

S2 ⊆ S1 ⇔ (∀x, x ∈ S2 => x ∈ S1)
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Figure 1: Agent interaction using sensory and actuator messages.

Published messages are not naturally retained within the network for later consultation. 

Therefore, the AAANTS framework has provided a service called Message Queue Server 

(MQS) to retain the history of published messages.  This essentially acts as a repository 

of all sensations and actuator messages that have taken place with in a specific period in 

time.  Agents can communicate with the MQS to query recent patterns of data.  Each 

agent undergoes an adaptation stage with the intention of improving their behaviour to 

evolving  environment  conditions.   The information  stored in  the  MQS performs an 

analogous function  to that  of  pheromones used in  insect  colonies.   Pheromones  are 

chemicals  deposited  by  individual  insects  in  order  to  exchange  information  among 

individuals  and  are  evaporated  temporally.   Similarly,  the  sensory  and  actuator 

information captured by MQS are dissipated temporally.

Knowledge Representation

Agents  as  discussed  earlier,  are  autonomous  entities  that  respond  to  environment 

sensations while maintaining coherent knowledge structures relevant for its behaviour. 

Agents in the AAANTS model perform the inference related activities individually by 

matching information gathered from the surrounding with the frame-based knowledge 

structures  in  possession  [15].   Further,  these  frame-based  knowledge  structures  are 
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modified using Reinforcement Learning techniques based on varying environment state 

that reinforce a certain behaviour.  Actuator channels too can be used as input to agents 

since behaviour of some agents can act as sensations to others.  For example, activating 

the behaviour of “opening of a door” can act as a sensation to trigger activity on other 

services such as lighting, air conditioners, electric appliances etc.  

Agent behaviour naturally does not solely depend on another for activation, since other 

environment conditions needs to be consulted.  For example, a group of agents may 

have adapted to a relationship of a  human entering a room in summer with that  of 

activating the air conditioner. Such basic behaviour makes agents naively adapt repetitive 

patterns without considering other complementary factors in the environment.  A better 

solution would be to gather other complementary variables from the environment and 

adapt to changing situations in a real-time manner.  With reference to the above example, 

it would be more appropriate to activate the air conditioner taking into consideration the 

environment  variables  such  as  temperature,  humidity,  time,  and  other  predictive 

behaviour.   In addition,  the  user  in  weekends  might  spend only  few minutes  in  the 

specified  environment  for  some  mundane  activities  and  might  not  need  the  air 

conditioner to be turned on.

Reason for Non-Intentional Behaviour

We  describe  the  cooperative  behaviour  of  agents  in  the  AAANTS model  as  “non-

intentional”,  since  there  does  not  exist  any  intentional  direct  communication  among 

agents using an accepted agent communication language.  Agent interaction is facilitated 

by  message  exchanges  disseminated  in  the  network  where  the  interested  agents  are 

responsible  for intercepting and processing the published messages to exhibit  further 

behaviour.  This methodology enables information sharing among a group and the ability 

to  influence  behaviour  on  others  without  explicit  knowledge  about  the  participants: 

thereby  making  the  interactions,  non-intentional.   We  find  this  methodology  having 

resemblance to the interaction  mechanisms found in insect  colonies  with the  use  of 

chemicals such as pheromones.
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AAANTS Coordination Model

As discussed earlier, we have defined the AAANTS system as a multi-agent system where 

a community of agents achieves goals collectively.  So the agents will time to time submit 

individually decided actions to overcome needs of the community.  When several urgent 

needs occur at once, there must be a way to resolve conflicts.  One scheme for this might 

use some sort of central market place, in which the urgencies of different goals compete 

and  the  highest  bidder  takes  control  [10].   This  strategy  may  fail  since  extent  of 

achievement  in  the  selected  goal  may  not  be  defined.  Another  way  is  to  use  an 

arrangement called cross-exclusion, which appears in many portions of the brain [10].  In 

such a system, each member of a group of agents is wired to send “inhibitory” signals to 

all other agents of that group which makes them competitors.  When any agent of such a 

group is aroused, its signals tend to inhibit others.  This leads to an avalanche effect, as 

each competitor grows weaker; its ability to inhibit  its challengers also weakens.  The 

result is that even if the initial difference between competitors is small, the most active 

agent will quickly lock out all the others.

So cross-exclusion is one of the methods that can be used to regulate levels of activities 

in an agent society.  But cross-exclusion can make some selected goal to totally dominate 

the agent functionality through inhibition.

The AAANTS model  is  composed of  a  collection  of  agents,  each responsible  for  a 

defined type of activity.  For example, with reference to the (Figure 2), the movement of a 

Robot  with  four  wheels  and  two motors  on  either  side  is  controlled  by  four  basic 

behaviours such as forward, turn left, turn right and stop.  These four movements could 

be  sequenced  in  various  permutations  to  depict  wide  range  of  synchronised  and 

intelligent activities.
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Figure 2: AAANTS Coordination Mechanism

We  have  discussed  the  AAANTS  communication  model  as  non-intentional  due  to 

absence  of  direct  intended  communication  among  agents.   Therefore,  the 

synchronisation related information should be kept at each agent that participates in an 

emergent behaviour.  This information is stored in frame based knowledge structures 

located at each agent.  The information related to sensations, goals, current and previous 

actions are continually published through the communication channel.  When an agent 

intercepts these signals through the communication handler, these are matched against 

the knowledge structures by the inference process.  The inference process should select 

the most appropriate behaviour.

The inference process would take into account the current goal, on-going and previous 

activities  and  environment  sensations.   The  same  behaviour  for  example  “Move 

Forward” can be depicted under different goals such as object tracking, move an object 

from source to destination or in order to reach the power source for recharging. 

Implementation  of  the  Non-intentional  Model  of 

Communication

The  implementation  of  the  AAANTS model  initially  has  focussed  on  developing  a 

framework  to  facilitate  the  design  objectives.   The  framework  mainly  focuses  on 

providing facilities to a multi-agent system such as process management, communication, 

agent life-cycle management, persistence management, mobility and security to a multi-
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agent system [14].  Implementation details  of communication sub-system are of main 

concern within this paper.

Communication Layer

As described earlier,  the AAANTS communication subsystem can be segmented into 

Content, Message and Communication Layers together with some system level services. 

The  Communication  Layer  is  implemented  using  UDP  multicasting.   Multicasting 

enables information publishers to disseminate a single message to multiple subscribers 

thereby eliminating redundant, retransmission of messages found in a unicast protocol 

such as  TCP/IP.   We have used two multicasting  groups  to separate  messages  into 

sensory  and  actuator  origin  as  depicted  in  (figure  1).   This  separation  has  been 

intentionally performed due to the high traffic rate in the sensory channel.  

Message Layer

The Message Layer is placed on top on the Communication Layer to provide proper 

encapsulation of sensory and actuator signals as messages.  The messages are created by 

the publishers and intercepted by the subscribers.  Each message contains a header and a 

data  portion.   The  header  contains  information  such  as  subject,  originator  ID, 

verification data and sequence number.  The main publishers of the sensory channel are 

the heterogeneous sensory services that capture environmental sensations such as real-

time  video,  audio,  voice  recognition,  temperature  and  motion.   The  adjective 

“heterogeneous”  is  intentional  in  generalising  the  services  because  of  variety  of 

sensations, platforms and application programming languages (C, C++ and Java).  The 

primary consumers of the sensory channel are the egalitarian collection of agents that 

relentlessly listen for messages published by the sensory services.  The next channel as 

depicted in figure 1 is actuator channel, which mainly carries actuator signals published 

by  the  agents.   The  agents  perform  real-time  processing  of  signals  against  their 

knowledge bases to publish the  inference as  messages that  can activate behaviour  in 

processes embedded in the environment, called actuator services.  The agents that belong 
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to a homogeneous group recursively become listeners to the messages in the actuator 

signal  channel.   This  enables  agents  to  give  real-time  sequence  of  inter-dependent 

activities that has been learned in the past.

Content Layer

The Content Layer is embedded with the Message Layer and mainly focuses in the data 

portion of the message.  The content is based on XML that has the natural advantage of 

describing various types of content.  Both agents and services possess XML parsers to 

create  and  extract  information  from  the  content  layer.   We  have  included  further 

functionalities in the XML parsers used by agents to handle disparate and unpredictable 

patterns of content.

The Prototype

We  have  initially  created  several  wrappers  in  C++  and  Java  to  represent  the 

Communication  Layer  that  handle  multicast  messaging  within  a  distributed  network. 

These  wrappers  adhere  to both  Proxy and Observer  Pattern as  described in  [5].   A 

message wrapper is used by another library that offers a façade to construct and extract 

messages that represents the message layer, which is further extended to handle XML 

content manipulation.  These libraries were further amalgamated with other processes to 

build up the AAANTS framework.

We have developed an initial simulation (Figure 3) to represent an Intelligent Room, using 

several sensory and actuator services.  We have selected some basic level sensory services 

such as  motion sensor,  sound sensor,  vision camera for gesture recognition,  infrared 

sensor for remote control commands and a voice recognition engine developed on IBM 

ViaVoice engine.  Each of these services, though heterogeneous in functionality, merges 

into a single level of interaction because of XML based content layer.  We have also 

developed some actuator services based on a robotic toolkit (Lego Mindstorms), voice 

synthesis engine (based on IBM ViaVoice), text message sender and X10 based electronic 

appliance controller.
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Figure 3: Testing and Simulation Environment for the Intelligent Room Project.

We have tested the current implementation on a limited functionality “Intelligent Room” 

project to condition the environment state depending on user behaviour.  We developed 

devices to gather environment state information such as motion (user entering or leaving 

the room and movement to specific parts of the room), temperature, light intensity, noise 

levels, and speech recognition as primary sensory inputs.  The actuations or changing of 

environment  state  is  carried  out  by  using  typical  appliances  such  as  lights,  air 

conditioners,  fans,  televisions,  and  radio/music  players.   We  initially  choreographed 

episodes  of  typical  human  behaviour  against  a  predefined  sequence  of  changing 

environmental  states.   Thereafter,  collected  behavioural  patterns  exhibited  by  the 

AAANTS implementation for the same scenarios.   The data gathered showed strong 

correlation to the expected results.

Future Work and Conclusions

We have already performed initial testing using these services to stimulate cooperative 

behaviour amongst a colony of agents with in a single colony container.  The test has 

shown favourable qualitative results in terms of cooperative behaviour within a single 
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colony with low intensity of real-time sensory signals.  We have seen some conflicting 

behaviour  with  high  intensive  environments  in  terms  of  activity  sequence  and 

correctness.  We have also seen duplicate behaviour within a homogeneous community 

of agents that depict unexpected fuzzy behaviour.

We have devised several methodologies to overcome the deficiencies found in the initial 

testing phase.  We are in the process of enhancing the reinforcement-learning techniques 

used for stimulating further adaptive behaviour of the agents.  In addition, to overcome 

conflicting  behaviour,  it  is  favourable  to  periodically  facilitate  evolutionary  and 

reproductive activities to create new flavour of agents and to eliminate individuals that 

perform poorly over a period of time.

Further, we are in the process of testing the implementation with the smart navigation of 

a  robotic  vehicle  using  computer  vision  techniques.   We  are  confident  that  lessons 

learned from the AAANTS model would contribute to further clarify the understanding 

of emergent behaviour based on common-sense reasoning.
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Abstract

AAANTS (Adaptive  Autonomous Agent colony interactions with Network Transparent Services)  

model is conceptualised by extracting hybrid features from a very successful community life style found in  

the animal kingdom – the Ants.  Ant colonies have evolved with means of performing tasks collectively,  

which  are  far  beyond  the  capacities  of  their  constituent  components.  The  model  conceptualises  and  

implements a mobile colony of agents, that actively and intelligently interact with distributed networked  

services deployed on existing middleware architectures, such as CORBA and JMS.  Therefore, this paper  

discusses the details of a distributed and mobile agent colony architecture that uses industry standard  

middleware to deploy environmental services.

Introduction

Our work conceptualises a multi-agent system, which is called a Colony, as agents work 

in harmony and synergy to achieve community wide goals.  At present, an introductory 

level definition can be given to an agent as an entity with perceptions, goals, cognition, 

actions,  and  domain  knowledge,  situated  in  an  environment  [STON98].   AAANTS 

model uses the community life style of insects as a metaphor with further inspiration 
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from “The Society of Mind” theory [MINS86].  The colony of agents is conceptualised 

by extracting features of very successful community life style of the ants.  

Ants together with many other insect species, occupy a central place in artificial life due 

to  their  individual  simplicity  combined  with  relatively  complex  group  behaviour 

[PARU97].  The evolution of the Ant has provided it with the capacity of functioning 

collectively,  which enables it to perform tasks far beyond its constituent components. 

They  do  so  without  being  hard-wired  together  in  any  specific  architectural  pattern, 

without central control.  The consensus is that comprehension of emergent complexity 

in insect colonies such as Ants will serve as a good foundation for the study of emergent 

[BABA01] [GARC01], collective behaviour in more advanced social organisms, as well as 

leading to new practical methods in distributed computation. 

AAANTS model is mainly defined by a distributed colony of agent components and a 

collection of services.  A service can be any type of a component bundle consisting of 

hardware and software that is networked with a defined access interface using industry 

standard middleware, such as Java Messaging Service (JMS).  The agents in AAANTS 

system are given sensory and actuator capabilities  by these distributed heterogeneous 

services.  The distributed agent colony too is defined as a collection of components.  We 

understand components as an independently deliverable package of software operations 

that can be used to build applications or larger components [KNAP98].  Therefore, the 

colony can be envisaged as a distributed environment where myriad of components work 

in synergy while being mobile to specific colony locations during their life cycle.

In  the  AAANTS  model  we  have  used  three  industry  standard  middleware  namely 

CORBA, JMS and JINI.  CORBA is used for managing agent colony components by 

offering services for mobility, persistence, knowledge storage and name services.  JINI is 

used for managing distributed collection of heterogeneous services that can range from 

high-level networked applications to embedded utility programs.  JMS is used to merge 

the communication gap between agent components and the JINI based services.
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The AAANTS model

Artificial software agents can be designed from different paradigms such as collaborative, 

reactive, hybrid, mobile and smart agents [NWAN96].  The proposed AAANTS model 

can be classified as a hybrid of cognitive and reactive models, which are currently popular 

within the agent research framework.  The uniqueness of the AAANTS model can be 

summarised by considering the following design objectives.

• Artificial colonies of agents produce intelligent behaviour by using sensory and 

actuator services found in the environment.

• Definition  of  the environment  with self-describing,  distributed,  heterogeneous 

services responsible for providing sensory and actuator facilities.   In addition, 

these services are deployed on industry standard middleware such as JINI.

• A Shared information bus that facilitates communication within the agent colony, 

which is analogous to the pheromone trails found in a natural Ant colony.

• Competition  and  coordination  among  agents  with  ontological  similarities  to 

produce appropriate behaviour for a given sensation.

• Behavioural  adaptations  within  homogeneous  agent  groups  using  past 

experiences.

• Periodic  evolution  within  the  agent  colony  through  natural  selection  and 

totipotency.

• Mobility of agent components among several distributed locations of the same 

colony.

Therefore, AAANTS colony can be described as a synthetic ecosystem that collectively 

achieves goals on behalf of the human users by utilising the networked services.  These 

services  as  mentioned earlier  are heterogeneous,  distributed,  network transparent  and 

self-describing in nature.   It  is  these services that provide the agent community with 

sensory and actuator capabilities of their environment.
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In a natural Ant colony, there are homogeneous groups of Ants with common features. 

Similarly,  agents  in  an  AAANTS  colony  can  be  segmented  into  groups  that  are 

homogeneous in nature.  The grouping of agents is done on a functional basis such as 

financial  market  operations,  personal  assistance,  security,  information  brokering, 

messaging,  planning,  data  mining,  etc.  Agents  in  the  same  group  share  a  common 

ontology that enables them to understand each other.

As we already know a single implementation of a AAANTS colony can be distributed on 

several networked locations.  Also within a colony, there are groups of homogeneous 

agent component collections,  which can be distributed on several locations.   Though 

agents are distributed, interactions among them are possible with the use of messaging 

middleware.   But  still  there  are  situations  where  agent  components  within  a  single 

homogeneous group need to be at one location in order to depict special behaviour. 

Consequently, we have introduced mobility characteristics to the model to facilitate agent 

component convergence.

AAANTS Architecture

Agent Architectures are a popular method adopted in the industry to conceptualise agent 

systems. They offer the traditional advantages of modularisation in software engineering 

and enables complex artefacts to be designed out of simpler components.  The role of 

the architecture is to define a separation of concerns that identify the main functions, 

which ultimately give rise to the agent’s behaviour and define interdependencies among 

them  [LUCK98].  Therefore,  architectures  describe  the  high-level  configuration  of  a 

system’s  constituent  components  and  the  connections  that  coordinate  the  activities 

among those components [KNAP98].

There  is  already  quite  a  promising  collection  of  architectures  conceptualised  and 

implemented by the academic and commercial institutions based on BDI (Belief-Desire-

Intension), Blackboard, Subsumption, etc [FERB99].  We have the option of either to 

reuse an existing architecture or to design a new model altogether.  But while considering 

the design objectives of the AAANTS model, it became quite apparent to us that existing 

architectures  could  not  fully  support  the  requirements  of  the  AAANTS  model. 
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Consequently,  we  have  formulated  a  new  architecture  specially  designed  to  achieve 

design objectives of the AAANTS model.

A conceptual view of the overall architecture of the AAANTS model is depicted in figure  

1.   The architecture  has  adopted  a  layered approach that  has  segmented the  overall 

architecture  into  three  functional  concerns:  the  environment,  adaptation,  and  agent 

colony.  Each of the layers is composed of an egalitarian collection of components that 

interface in a dynamic manner.

The communication needs of an agent colony and distributed services are dissimilar.  An 

obvious hurdle is to overcome interfacing among adjacent layers of the architecture while 

maintaining simplicity and dynamism.  As a solution to this we have resort to the use of 

communication  middleware  that  support  heterogeneous  distributed  components  to 

interface with one another in simple and a dynamic fashion.

External Environment

Distributed Service
Layer

Service Middleware
(JINI)

Service Adaptation
Layer

Agent Group

Sensory Semantic
Parsers

Actuator Semantic
Parsers

Interface Semantic
Parsers

Agent
EcoSystem

Sensory Services
User & Admin
Interfaces

Actuator Services

AAANTS - Architecture

Agent
Communication

Bus

Figure 1: Layered architecture of AAANTS model [RANA01]
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Implementation

AAANTS model is justified by using an implementation that consist of three modules: 

System  Definition  Components  (SDC),  System Execution  and  Control  Components 

(SECC),  and  System  Monitoring  and  Visualisation  Components  (SMVC). Figure  2 

depicts these abstract level modules and a summary of interactions.

SDC is a broad term representing a collection of application tools that can be used to 

define  an  initial  agent  colony.   The  SDC  components  are  used  initially  by  an 

administrator  to  define  and  describe  the  characteristics  of  a  specific  AAANTS 

implementation.  The definition involves describing about the layout, distribution model, 

ontologies, and initial knowledgebase. This definition is also persisted in a “Repository” 

implemented as a CORBA service. 

 SECC represents the run-time environment of the implementation consisting of agents, 

communication  channels,  and  services.   SECC  is  a  highly  dynamic  and  active 

environment that is analogous to an active ant colony. An important component of the 

run-time environment is the use of a distributed container to support total life cycles of 

agent components.  Containers connect to each other and facilitator services with the use 

of CORBA middleware.  The containers use the CORBA channel to exchange serialised 

mobile agent components.  There after the services are implemented with the use of 

JINI middleware that offer benefits such as self-describing attributes, embedded support, 

attribute based name services, and event-based discovery and notifications.  The agents 

interact  with  these  services  with  the  use  of  a  gateway  service  that  map  JINI  and 

communication bus middleware.  The communication bus middleware is implemented 

using Java Messaging Service (JMS) that support subject based asynchronous messaging. 

The gateway performs an important function since agents and distributed services use 

two different types of communication middleware.

The next important part of SECC is the agent-based components.  These agents are 

nurtured by the containers that provide life-cycle based functions, thread of execution 

and mobility.  Agents interact with each other in the same colony with the use of subject-

based messages that use XML for content definition. 
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SMVC is a set of tools used by the administrators and the end users to interact with an 

active  agent  system.   SMVC  is  used  for  monitoring  activities  with  a  single  colony 

implementation.  The tools provide the visualisations of interactions among agents and 

services.    It  too  provides  a  simulation  environment  that  can  be  used  to  determine 

behaviour of the agents on different data sets. 

Figure 2: High-level components and their interactions in the AAANTS implementation 

Conclusions and Implications

In this paper we have presented the architectural design of the AAANTS model that is 

analogous to a natural Ant colony.  AAANTS is a general-purpose agent model since it 

has  the  capability  to  interact  with heterogeneous  services  and has shown remarkable 

improvements over other functional monolithic agent models in terms of adaptability 

and knowledge/component reusability.

The implementation has proven that the use of the Adaptation Layer for interfacing has 

helped to overcome the messaging conflicts among agents and services.  It was apparent 

from  the  implementation  that  this  layer  excludes  the  need  for  brokering  and 

matchmaking services  present in  traditional  deliberative  architectures,  since  it  enables 

subject based self-describing messages.
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AAANTS model  has  helped  us  to  observe  emergent  behaviour  similar  to  that  of  a 

natural Ant colony. These agents sense the environment and communicate with others 

using  primitive  message  constructs  to  offer  emergent  adaptive  behaviour  as  a 

community.
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Abstract

There are many examples of successful emergent intelligence found in natural ecosystems.  Among them,  

the community behaviour of the insects and specially the ants has been admired by humans for centuries.  

Ants  occupy  an  important  position  in  community  life  due  to  individual  simplicity  combined  with  

relatively  complex group behaviour.  Ant colonies  have evolved means of performing tasks collectively,  

which are far beyond the capacities of their constituent components.  We have designed and implemented  

an agent model called AAANTS (Adaptive Autonomous Agent colony interactions with Network  

Transparent Services), that consist of a collection of software components which can be considered as an  

artificial colony or society.   AAANTS conceptualises and implements a colony of agents that actively  

and intelligently interact with distributed networked services that act as an augmented neural extension to  

the assisted users. 

In this paper we discuss the conceptualisation of the AAANTS model with reference to community life  

styles of an ant colony.  Further we focus on the architecture, task distribution and adaptability of a  

myriad of components with an active environment of distributed heterogeneous services.

Introduction

AAANTS  model  consists  of  a  collection  of  software  components  which  can  be 

considered as an artificial colony or society, since they work in harmony and synergy to 
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achieve community wide goals.  The model can also be classified as a complex system 

[GARC01]  [BABA01]  since  there  is  large  number  of  components  with  complex 

interactions among them.  

The  colony  of  agents  is  conceptualised  by  extracting  features  of  a  very  successful 

community life style found in the animal kingdom – the Ants.  In this context a colony 

can be envisaged as a distributed environment where a myriad of components work in 

synergy while being mobile to specific colony locations during their life cycle [RANA02]. 

Synthetic ecosystems such as insect species, occupy a central place in artificial life due to 

their  individual  simplicity  combined  with  their  relatively  complex  group  behaviour 

[PARU97].  Ant colonies have evolved means of performing collective tasks, which are 

far beyond the capacities of their constituent components. They do so without being 

hard-wired together in any specific architectural pattern, without central control.  The 

consensus is that comprehension of emergent complexity in insect colonies such as ants 

will  serve  as  a  good  foundation  for  the  study  of  emergent  [BABA01],  collective 

behaviour  in  more  advanced  social  organisms,  as  well  as  leading  to  new  practical 

methods in distributed computation. 

This paper discusses the conceptualisation and implementation of a model that facilitate 

the proper functioning of various components found in a synthetic ecosystem such as 

AAANTS.   One of  the  key  issues  addressed is  the  distribution  and management  of 

myriad of components that constitute an active AAANTS implementation.  Thereafter, a 

methodology is presented that enable the dynamic interaction among components with 

the help of a messaging platform.

Background and Motivation 

Several  metaphors  and  paradigms  have  given  inspiration  to  the  proposed  AAANTS 

model.  An important metaphor is the goal-driven community life style of ants in the 

animal kingdom. Ants’ success story spans several millions of years even before the first 

humans are into being.  Since  each individual  ant maintains the capability  to solve an 

integrated part of the overall puzzle, the key motivation was to device a model that can 
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depict this intelligence in a similar fashion. Further inspiration is derived by “Society of 

Mind” theory by Marvin Minsky [MINS86], which portrays the mind as a collection of 

mindless  components  that  interact  and  compete  to  provide  intelligent  behaviour  to 

environment perceptions. 

The concept of synthetic colony based ecosystems is present in the work done on several 

other projects  such as Hive [MINA99], Amalthaea [ALEX96] and Anthill  [BABA01]. 

Among them Hive  is  described  as  an ecology  of  distributed  agents  that  harness  the 

facilities of local resources by the use of an application created out of the interaction of 

multiple agents across a network. The heterogeneous distributed services discussed in the 

AAANTS theory have gained wisdom from “Ubiquitous Computing” paradigm, which 

was  predicted  by  Mark Weiser  [WEIS93]  where  naturally  embedded process  capable 

components assist humans in their daily activities. 

AAANTS Model

The proposed AAANTS model can be  classified as  a  Complex System.   A complex 

system is  usually  constituted of  many elements,  which  interact  with each other.  The 

complexity  of the system is proportional  to the number of elements,  the number of 

interactions in the system, and the complexities of the elements and of their interactions 

[BABA01].  In  natural  complex  systems,  every  element  is  also  a  complex  system; 

therefore we can only obtain a relative complexity depending on a reference point. Since 

we can use various reference points, there cannot be an absolute complexity, and each 

relative complexity will be different. The global behaviour of the system arises from the 

interactions of the elements of the system. Therefore a complex system is more than the 

sum of its constituents. This means that a complex system has properties that are not 

present in its constituents. These properties are called emergent [GARC01]. They emerge 

from the interactions of the components with in a complex system.

Currently,  artificial  software agents can be designed from different paradigms such as 

collaborative,  reactive,  hybrid,  mobile  and  smart  agents  [NWAN96].   The  proposed 

AAANTS model takes wisdom from naturally occurring Ant colonies, and is a hybrid of 
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cognitive and reactive agent domains.  The uniqueness of the AAANTS model can be 

summarised by considering the following characteristics.

• Presence  of  artificial  societies/colonies  of  agents  that  produce  intelligent 

behaviour by using sensory and actuator services embedded in the environment.

• Definition  of  the  environment  with  self-describing,  distributed  and 

heterogeneous services.

• Evolution of the agent colony by natural selection of the fittest.

• Competition among a group of agents with ontological similarities to produce the 

best-suited behaviour for a given sensation.

• Group adaptation of behaviour by using credibility of past actions of the colony.

• A  shared  communication  bus  to  facilitate  interaction  among  the  agents  and 

services.

With reference to the above characteristics, AAANTS can be described as an artificial 

agent  society  that  collectively  achieves  goals  of  the  human  users  with  the  use  of 

networked services.  These services are heterogeneous, distributed, network transparent 

and  self-describing  in  nature. The  services  being  heterogeneous  do  not  only  mean 

running  on  heterogeneous  platforms  but  also  possessing  heterogeneous  functionality 

[RANA99].   Further, these  services  provide  the  agent  community  with  sensory  and 

actuator capabilities of their environment.

In an ant colony there are different groups of ants that have common features.  For 

example  worker  ants,  soldier  ants  and  housekeeper  ants  though similar  in  structure, 

possess specialities to do their tasks better. Similarly, in the AAANTS model, agents can 

be  segmented  into  groups  that  perform  similar  tasks.   Each  group  possesses  the 

capability  to  perform specialised  functionality.  The  grouping  of  agents  is  done  on a 

functional  basis  such  as  financial  market  operations,  personal  assistance,  security, 

information brokering, messaging, planning, data mining, etc. Agents in the same group 

share a common ontology that enables them to understand each other.  However, since 
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each group uses different ontologies we have to device a mechanism to bridge each of 

their capabilities to achieve community wide goals.

AAANTS internal representation and the environment

The agents in the AAANTS system are supposed to work in a community that intercept 

environment sensations and convert them to actions that benefit the society as a whole. 

But there may be a need to generate environment sensations within the agent community 

so as to simulate periodic activities within the community.  This is similar to the idea of 

sensing events inside the brain as described by [MINS86], where only a small minority of 

agents connected directly to the sensors of the outer world, like those that send signals 

from the eye or skin; otherwise most of the agents in the brain detect the events inside 

the brain.

The actuator agents are responsible for changing state of its immediate environment with 

the  influence  of  actions.   Actions  and  their  consequences  can  be  analysed  as 

transformation  of  a  global  state,  responses  to  influences,  computing  process,  local 

modification, physical displacement, and as commands [FERB99].  Therefore, an action 

can be accepted as a modification of the environment.   In the AAANTS model,  the 

individual  actions  of  the  agents  can  be  linearly  applied  in  the  environment  or 

amalgamated to a composite action that may do more complex modification.

The sensory and actuator related information flow of the AAANTS model is depicted in 

figure  1.   The  model  uses  an  information  middleware  that  facilitate  subject-based 

broadcasting, message queuing, and routing.  This middleware is similar in functionality 

to  the  chemical  trails  of  Pheromones  used  by  natural  ant  colonies  to  exchange 

information  and  coordinate  collective  activities.   Agent  components  in  an  active 

AAANTS  colony  would  listen  to  interested  subjects  for  asynchronous  delivery  of 

sensory messages published by sensory services through the Service Gateway.  Similarly, 

actuator related information too is  published by the  agent colony  components  to be 

intercepted by the respective environment services.

Page 340 of 352



Appendices

Figure 1: AAANTS interactions with the Environment [RANA01]

It is through perception that the agent acquires information about the world to allow it 

to  prepare  its  action  to  pursue  its  goals.   Therefore  agents  require  an  embedded 

perception  system in order to perceive  the environment.   Perceptive  systems can be 

passive  or  active  depending  on  the  approach  taken  to  perceive  the  environment 

[FERB99].  In passive perceptive systems the signals follow an approach that is entirely 

constructional where elementary signals are pre-processed and then segmented to obtain 

elementary features leading to the recognition of objects, scenes, words or phrases.  In 

active  systems,  by  contrast,  the  perceptive  system  simultaneously  receives  the  data 

coming from the sensors  and the  expectations  and goals  coming from the cognitive 

system.  It can control it sensors in such a way as to maintain a coherent representation 

of its environment.  Therefore, the AAANTS model should adopt an active perceptive 

system to comply with that of natural ants.  But, it should also be noticed that there 

exists  some amount  of  pre-processing  of  sensory  information by the  service  specific 

parsers before being published to the agent components.

Reproductive and evolutionary aspects of the AAANTS

AAANTS system is composed of groups of agent colonies that may have intra or inter-

group interactions.  However, among all types of interactions, intra-group interactions 

are more common and frequent since the agents with in a group try to achieve a shared 
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set  of  goals.    Since  all  the agents  are adaptive,  we can expect an improvement and 

efficiency  in  the  intelligent  activities  demonstrated  by  all  the  agents  in  the  system. 

However, since each agent learns independently from the environment, different agents 

may depict heterogeneous behaviour to the same kind of environment sensations.  Some 

of the behaviour of individual agents may get obsolete as the total system proceeds in 

time.  Therefore, we have proposed an evolutionary and reproductive mechanism similar 

to that found in the biological environment to improve the well-being and suitability of 

an agent colony over a period of time.

In the AAANTS system, each agent maintains a variable that represents its fitness in the 

total agent colony.  Fitness is a representation of the correct behaviour in view of the end 

user.   Agents  increment  or  decrement  their  fitness  variable  value  depending  on  the 

feedback from the responsible end-users.  The agents of the same group in the colony 

are rewarded in the same fashion for their actions.  Therefore, within the same agent 

group  the  fitness  variable  decides  to  some extent  the  successful  actions  taken  by  a 

collection of agents.  Periodically the agent framework eliminates the unfit agents from 

the agent colony.   An agent being unfit  is  decided by using a threshold value of the 

fitness variable, which again would be a variable depending on environment factors.

However, there can be situations where a collection of actions is selected.  Here we come 

across the problem of an execution plan. We use joint and concurrent action selection 

methods as mentioned in [GRIF99].  A joint action is a composite action, made up of 

individual actions that must be performed together by a group of agents.  Each agent 

involved  in  executing  a  composite  action  makes  a  simultaneous  contribution  to  the 

overall result.  Concurrent actions are those that can be performed in parallel by different 

agents, without the need for synchronisation.
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Figure 2: Evolutionary capabilities of the AAANTS model

As described in the above paragraphs, selection of the fittest agent is performed through 

a properly structured mechanism.  During this process, unfit agents are eliminated from 

the agent ecology.  These reduced quantities of agents should be reinstated to maintain a 

healthy ecology.  Therefore, as found in the natural biological world, we have introduced 

a reproduction mechanism to introduce new member agents to the AAANTS system. 

The reproduction mechanism can be summarised as depicted in figure 2.

Agents in the AAANTS system are organised into groups.  Since the agents in one group 

are responsible for a subset of shared activities, we can call it as a homogeneous agent 

group.  Normally reproduction mechanism takes place within agents in a homogeneous 

group and among them, only the fittest are allowed.  Each agent consists of reusable 

components that may or may not take part in reproduction.  Therefore, as depicted in 

figure 2, the child agents produced may have a blend of features from their parents.

One of the main objectives behind the AAANTS system is to make it adaptive to the 

changing environment.  There is no better example to take for this issue other than from 
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the  natural  biological  world  –  reproduction  and  evolution.   The  reproductive  and 

evolutionary  mechanisms  introduced  in  AAANTS  model  can  be  considered  as  a 

stepping-stone for achieving adaptability found in the biological world.

Implementation

We have implemented an Agent Building Platform (ABP) for the AAANTS model.  The 

platform is implemented on a distributed architecture using Common Object Request 

Broker Architecture (CORBA using VisiBroker).  The platform is capable of building an 

agent  colony  to  automate  a  defined  collection  of  services  by  dynamic  configuration. 

Interface Description Generator (IDG) of the developed software tool can describe the 

interfacing of agent-to-agent and agent-to-service communication.  

AAANTS Building Platform (ABP) consists of distributed processes such as Domain 

Controller, Agent Component Manager, Controller Interface, Knowledge Repository and 

Service gateway.  The agent components that belong to a single colony can be distributed 

on multiple component managers with the facility to migrate to different platforms.  The 

total knowledge of the colony is kept at the Knowledge Repository that can be modified 

by the Knowledge Edit Tool (KET) implemented in the Controller  Interface.  Using 

KET, the administrators can introduce and modify knowledge structures.

The user interaction with AAANTS implementation uses heterogeneous interfaces such 

as stand-alone, Internet, and PDA clients.  These interfaces allow the agent colony to 

actively communicate with user for notification, confirmation, and configuration.  Users 

may also be responsible for maintaining some of the services such as Global Positioning 

Systems  (GPS),  Mobile  phones  etc.  in  a  ubiquitous  manner,  that  are  used  by  agent 

ecologies for decision making and assistance.

ABP also offers a tool that can be used by the administrators to activate reproductive 

cycles  among primitive  agents.   This  tool would first  perform a fitness test  to select 

suitable participants for reproduction.  The selected participants are randomly combined 

to generate genetically improved offspring.  The improvement can be described in lines 

of  knowledge,  composition,  ontology  bridging  and  communicability.   The  tool  also 
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offers set of interfaces for end users to artificially simulate the reproduction procedure. 

So overtime, AAANTS produce agent-based components that are better equipped to 

survive in the environment consisting distributed services. 

The initial prototype system of AAANTS has been tested  (Figure 3) with a robot built 

from a simple toolkit  with a small  digital  camera acting as the sensory device of the 

robot. The robot was programmed to use the camera as its eye and take appropriate 

action depending on the output of the camera. Further, we used other simulated services 

such as infrared sensors, GPS, SMS, email, voice synthesis and recognition to simulate 

heterogeneity. 

Figure 3: AAANTS simulation and testing environment

Conclusions and Implications

In this paper we have presented a design model of a system that attempts to model an 

agent based software system using the characteristics of an ant colony.  AAANTS system 

is  a  general-purpose  agent  system  since  it  has  the  capability  to  interact  with 
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heterogeneous  services  where  it  has  shown  remarkable  improvements  over  other 

functional monolithic agents in terms of adaptability and component reusability.

We  were  able  to  simulate  emergent  behaviour  in  a  synthetic  ecosystem  using  the 

AAANTS model.   The agents  behaved  in  a  collective  manner  for  sensations  in  the 

environment.  We tested the model with simulated and actual sensation data to ascertain 

predictability.   The  implementation  depicted  adaptability  with  proper  timing  and 

sequencing of atomic behaviour over long periods of time.  We have noticed that while 

introducing  a  new  service  (sensation)  to  the  environment,  that  a  colony  shows 

exponential adaptation when initially trained with an actual data set.

We expect to perform future improvements on the evolutionary aspects of a colony so 

that an implementation can exist with long lapse of administrator intervention. We hope 

that this would enable us to create a synthetic replica of a natural Ant colony.
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